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Abstract
Domain top lists serve as critical resources for the Inter-

net measurement, security, and privacy research communities.
Hundreds of prior research studies have used these lists as a
set of supposedly popular domains to investigate. However,
existing top lists exhibit numerous issues, including a lack of
transparency into the list data sources and construction meth-
ods, high volatility, and easy ranking manipulation. Despite
these flaws, these top lists remain widely used today due to a
lack of suitable alternatives.

In this paper, we systematically explore the construction
of a domain top list from scratch. Using an extensive passive
DNS dataset, we investigate different top list design consider-
ations. As a product of our exploration, we produce a voting-
based domain ranking method where we quantify the domain
preferences of individual IP addresses, and then determine a
global ranking across addresses through a voting mechanism.
We empirically evaluate our top list design, demonstrating that
it achieves better stability and manipulation resistance than
existing top lists, while serving as an open and transparent
ranking method that other researchers can use or adapt.

1 Introduction

Internet measurement, security, and privacy research heavily
relies on domain top lists, which provide a set of purportedly
popular or commonly used domains to investigate. Existing
top lists, such as Alexa [10], Umbrella [51], and Tranco [39],
have been used in hundreds of prior academic studies [39,45],
making it a critical research resource.

Despite many years of use in both academia and industry,
these domain top lists received little empirical investigation
until late 2018, when Scheitle et al. [45] and Le Pochat et
al. [39] characterized modern domain top lists and identified
various undesirable properties that could affect their use in
measurement efforts. These issues include high volatility in
the rankings, limited data granularity, and easy manipulation
to achieve high rankings for target domains. In addition, the
data sources and ranking methods for these top lists remain
opaque1, inhibiting a concrete understanding of these top lists
and their appropriate uses.

1Tranco [39] was created to account for some existing top list flaws.

In spite of the serious concerns uncovered about existing
top lists, they continue to be used today throughout network-
ing and security research, as there ultimately remain no viable
alternatives. Few existing data sources can serve as such top
lists, and there has been little investigation into the construc-
tion of such datasets. In this work, we take the first step in
rectifying these shortcomings by investigating the develop-
ment of a domain top list from the ground up. We seek to
develop a top list that provides transparency into the data
source and ranking method, stability in rankings over time,
and stronger resistance to manipulation attacks.

Designing such a top list is technically challenging though,
especially as there is no single objective or universal ranking
to obtain. Instead, one must explore various design considera-
tions and their implications on the resulting top list properties.
Furthermore, to provide representative rankings, a top list
requires global, large-scale network traffic data as input, as
well as a computationally efficient data processing method.

In this paper, we explore building a top list using an ex-
tensive passive DNS (PDNS) dataset from one of the largest
DNS service providers (similar to Cisco’s OpenDNS [22]).
Passive DNS has been widely used in both academia and
industry, making it a more transparent and accessible top list
data source compared to proprietary datasets (e.g., Alexa [10]).
We propose a voting-based domain ranking method, where
individual IP addresses express their domain preferences, and
the global top list ranking is produced across IP addresses
through a voting mechanism. We then systematically explore
the implications of different design decisions on our pro-
duced top list’s properties, and compare it to existing top lists,
finding that our produced list demonstrates more favorable
properties compared to others. Ultimately, our work provides
the following contributions.
• We systematize the prior work on top list limitations, while

also identifying new methods ourselves for more effective
top list ranking manipulation.

• We develop a voting-based domain ranking method, based
on PDNS. Other researchers can adopt our method for sim-
ilar ranking scenarios.

• We systematically evaluate different top list design consid-

While Tranco’s ranking method is published, it ultimately aggregates existing
lists, thus it still relies on opaque input data.
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erations when building a top list using PDNS, providing
insights into the nature of top list construction.

• We provide access (both via a web interface and an API
endpoint) to a regularly updated domain top list constructed
using our ranking method at https://secrank.cn/topdomain.
We also open-source our top list construction implementa-
tion at https://github.com/secrank.

2 Domain Top Lists

In this section, we describe existing domain top lists and their
notable limitations. These limitations motivate our investiga-
tion into building a top list from scratch.

2.1 Opaque Existing Top Lists

Hundreds of research papers spanning various fields have
relied on domain top lists [39, 45]. Here we describe three
domain top lists that have been commonly used to rank do-
mains by user visits or traffic. We focus on free and publicly
available lists, as these are amenable for use by researchers
(particularly for longitudinal studies). We note that there are
other top lists that are paid (or otherwise restrict usage), or
are catered towards search-engine optimization rather than
domain popularity. For example, the Majestic Million [34]
ranks websites based on backlinks from other sites [32, 33],
rather than actual website visits. There are also industry pro-
posals for top list constructions [20, 35] that have not been
used in practice nor evaluated, and exhibit major limitations2.
We do not focus on these other domain rankings3.

A common theme across all these domain top lists is the
lack of transparency into how these lists are actually con-
structed, both in the data sources used and the ranking meth-
ods themselves. We argue that this is a severe limitation, as
it inhibits a detailed and complete understanding of what
researchers are actually measuring when using these top lists.

Alexa. Alexa’s Top Million Sites [10] is a popular and
free top list. The ranking method is not public, although it
is based on web traffic telemetry collected from user installs
of Alexa’s browser extension (on Chrome and Firefox), as
well as from participating “certified” websites that subscribe
to Alexa’s Certify service [12]. These certified sites include
Alexa’s measurement JavaScript code on their web pages,
allowing Alexa to directly monitor all site visits. Alexa ranks
second-level domains (SLDs) only, rather than fully qualified
domain names (FQDNs).

2Castro [20] proposed using TF-IDF [41] for deriving domain popularity,
but such a method penalizes domains accessed by many IP addresses, which is
contrary to expectations for popular domains. Mayrhofer et al. [35] proposed
simply ranking domains by the number of normalized IP address visitors.
This simple method ignores request volume and IP characteristics though, so
it is unlikely to produce a representative top list.

3We also do not consider the Quantcast Top Million [45] as this list has
not been available since April, 2020.

Umbrella. The Cisco Umbrella Top Million [51] is an-
other popular top list based on PDNS, constructed using
DNS requests observed across Cisco Umbrella’s global net-
work (e.g., OpenDNS [22], PhishTank [37]). Umbrella ranks
FQDNs by computing a score for each domain, considering
the number of different IP addresses issuing DNS lookups
for the domain compared to others [50]. However, the actual
scoring algorithm is not public.

Tranco. The Tranco top list [39] was created in 2019 by
Internet measurement researchers seeking to develop a more
manipulation-resistant top list. Tranco is not a top list con-
struction method itself, but rather a method for combining
the rankings of domains across multiple existing top lists
(e.g., Alexa, Umbrella). While Tranco’s ranking algorithm is
published, we note that it relies on the existing top lists as
input data, and we still lack transparency into how those lists
are constructed. In addition, there is no clear interpretation of
what Tranco’s ranking actually represents, as each input list
defines top domains differently. Our work is heavily inspired
by Tranco, which we view as the first major effort in securing
top lists. Our top list is inherently different from Tranco by
nature though, as our approach is to build an open, stable,
and manipulation-resistant top list from raw network data it-
self (which Tranco could use as an additional input list). In
contrast, Tranco’s manipulation resistance arises from using
multiple lists which each must be manipulated to successfully
manipulate the overall Tranco rankings.

2.2 Issues with Existing Top Lists

Beyond a lack of transparency into existing top lists, unde-
sirable characteristics plague these lists. In this section, we
discuss these issues for Alexa and Umbrella (we elide Tranco
here as it relies on the other lists as inputs). We survey pre-
viously identified issues, and present new issues we uncover
(involving more efficient manipulation attack methods).

2.2.1 Alexa

Undocumented Changes to Alexa’s Data Collection. We
identify that Alexa has modified its data collection over time
without publicly disclosing the changes. These changes im-
pact Alexa’s characteristics and what Alexa’s ranking actu-
ally measures, likely rendering Alexa-based research as non-
reproducible (and potentially affecting the accuracy of the
research itself). As one notable example, in May 2018, Le
Pochat et al. [39] observed that Alexa’s browser extension had
halted data collection from countries in the European Union
(presumably due to GDPR [4]). This change was not an-
nounced, yet it skewed data collection towards non-European
populations without Alexa users’ knowledge, and shrunk the
top 1M list to be consistently less than a million domains
(in early 2021, the Alexa top 1M list was as small as ∼500K
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domains). Appendix A provides another example of an undis-
closed change in Alexa’s data collection.

Limited Data. Alexa has acknowledged that they do not re-
ceive enough data to make rankings beyond 100K statistically
meaningful [11]. This lack of data manifests in a number of
undesirable top list properties. The list has been observed to
be highly volatile [45], and large portions of the list are simply
alphabetically ordered [43], suggesting that many domains
have identical visit metrics and Alexa breaks ties arbitrary
through alphabetical ordering. Prior work [39] also demon-
strated how easy it is to enter the Alexa top list by generating
a few visits to target domains in browsers with the Alexa ex-
tension installed. Together, these issues raise questions about
the usefulness of much of the Alexa top list.

Easier Manipulation through Alexa’s Certify Service.
While prior work [39, 44] identified ways to enter the Alexa
top list, achieving a high ranking (i.e., below 100K) has
been challenging. We identify an easier way to manipulate
Alexa rankings that achieves high rankings, through lever-
aging Alexa’s Certify service [12]. Certify is a paid service
where websites obtain detailed audience insight by including
a JavaScript snippet on their web pages. Beyond telemetry
from its browser extension, Alexa also uses data from Certify.

We detail the manipulation approach in Appendix B. In
short, using only a single IP address, we forge fake visits
to a target Certified website that are interpreted as arriving
from many distinct visitors, through generating requests to
the Alexa data collection endpoint with the target website’s
Certify ID and random visitor ID values. To validate this at-
tack, we registered two of our own test domains with Alexa
Certify, and observed their Alexa rankings when generating
different numbers of daily forged visitors to these domains
(shown in Figure 9 in Appendix B). With 20K unique forged
visitors (one request per visitor), we obtained a ranking as
high as 51,530 (and similar rankings can be consistently ob-
tained over extended periods), highlighting how effective a
low-cost (e.g., $20/month) single address attack can be. We
note that Le Pochat et al. [39] also performed manipulation
through the Certify service, sending requests to a target Certi-
fied domain over the Tor network [49] to obtain IP diversity,
but our method does not require IP diversity.

Ethical Considerations. We conduct our Alexa experiment
on our own domains that host webservers indicating that they
are test servers. Using only two domains should have negligi-
ble impact on Alexa rankings overall (particularly given its
daily instabilities). We also rate limit our requests to Alexa’s
telemetry endpoint to avoid potentially inducing high load.

Bias towards Certified Domains. While telemetry from
the Alexa extension and Certify are characteristically differ-
ent, the Alexa top list is generated using both data sources (in
an undisclosed manner). We investigate the Certified domains
in Alexa’s list (details in Appendix C), and identify that Alexa
is heavily biased towards Certified domains.

2.2.2 Umbrella

Umbrella shares similar lack of transparency concerns as
Alexa, and significant portions of its list are also simply al-
phabetically ordered (indicating many domains have identical
ranking scores that are arbitrarily broken alphabetically) [43].
Previous studies [39, 44, 45] have successfully manipulated
Umbrella’s ranking by generating DNS requests sourced from
multiple IP addresses. They obtained IP diversity through var-
ious methods, including using cloud providers, Tor [49], and
VPN services. These prior evaluations identified that Um-
brella’s ranking relies heavily on the number of addresses
generating DNS requests, moreso than the DNS request vol-
ume per address. Scheitle et. al [45] found that 10K addresses
generating 1 DNS request each for a target domain (resulting
in 10K total requests) achieved a rank of 38K, while 1K ad-
dresses with 10 requests (also resulting in 10K total requests)
only achieved a rank of 199K. Rweyemamu et al. [44] also
performed similar manipulation evaluations on Umbrella.

We identify an additional method for generating IP diversity
for DNS-based manipulation that can achieve higher rankings
than prior work (reaching a stable ranking within the top
10K), without requiring the attacker to directly control many
IP addresses (thus reducing the costs/barriers for attacks). The
approach is to rely on public Internet infrastructure that gener-
ates DNS lookups, such as open DNS resolvers. For example,
an attacker can issue DNS lookups to open DNS resolvers,
which subsequently send recursive requests to the PDNS re-
solver vantage point. Thus, the PDNS data captures DNS
requests from the many IP addresses of these open resolvers,
rather than the attacker. We detail the open DNS resolver
manipulation process in Appendix D. In Section 6.2.3, we
will evaluate the manipulation resistance of Umbrella and our
own top list ranking method, finding that Umbrella is indeed
less manipulation resistant than our approach.

3 Overview

Given the limitations of existing domain top lists, we aim
to develop a new top list from the ground up. We start by
discussing desired properties for top lists, and outline our ap-
proach for constructing a top list that satisfies these properties.

3.1 Top List Properties

In general, domain ranking is an inherently subjective task, as
it depends on the metrics used for domain popularity. As there
is no “ground-truth” or “universal” ordering, different ranking
methods are arguably reasonable. However, there are still
desirable properties for domain top lists, given their extensive
use in measurement research. We list these properties, derived
from the limitations discussed in Section 2 and from the top
list properties evaluated in prior work [45].
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Construction Transparency. The entire method for top
list construction, including the data sources used and any
data processing, should be public. Without such information,
researchers lack a concrete understanding of the limitations
and biases that arise from using a list, potentially polluting the
research efforts that depend on the list. The existing domain
top lists lack this property, as their data sources and/or list
construction algorithms remain unpublished.

Construction Consistency. Ideally, the top list data col-
lection and construction method should stay consistent over
time, affording longitudinal measurement studies based on
the list. Unannounced inconsistencies may introduce un-
expected changes in ongoing measurements. We note that
should changes be needed, they should be publicly announced
and well documented. We identified (in Section 2) that the
existing top lists are not consistently constructed, with undoc-
umented changes to their data collection or ranking method.

Manipulation Resistant. Top lists should be constructed
to resist manipulation, limiting the extent to which resource-
constrained attackers can affect the rankings of target domains.
Attackers can benefit in practice from entering top lists, espe-
cially at higher rankings. Several security analysis tools and
services (e.g., DNSthingy [3] and Quad9 [7]) whitelist do-
mains on existing top lists, and higher-ranked sites are more
likely to be whitelisted (e.g., DNSthingy whitelists the Alexa
top 10K [3]). Malicious domains may escape scrutiny by ap-
pearing highly ranked on top lists. In addition, attackers also
manipulate top lists for attracting traffic to their sites [8, 48].
Thus, attackers are incentivized to not only enter their target
domains into top lists, but to achieve high rankings. In prac-
tice, there is enough demand for top list manipulation that
several websites [2, 9] offer top list manipulation as a paid
service, where the costs increase significantly for achieving
higher rankings (e.g., $40 for entering the Alexa list versus
$4K for entering the top 10K [9]). We note that it is un-
reasonable to prevent manipulation altogether though, as a
sufficiently powerful attack may be indistinguishable from a
legitimate popular domain. However, prior work [39, 43, 45]
and our own evaluation in Section 2 demonstrate that existing
lists are easily manipulated with limited resources (e.g., a
small number of IP addresses or requests).

Ranking Stability. A top list should exhibit ranking sta-
bility, where the majority of the list should not churn within
a short period of time. In contrast, volatile lists can result in
drastically different observations when measuring at differ-
ent times, inhibiting measurement generalization and repro-
ducibility. Note that a top list must still be reactive to notable
short-term effects though, such as a viral new domain. Prior
work [39, 45] observed high volatility in existing top lists.

3.2 Building a Top List from Scratch

In this work, we investigate constructing an open and transpar-
ent domain top list satisfying the desired properties mentioned,

which existing popular top lists do not. Our exploration into
how to systematically construct such a list also provides a
deeper understanding of the factors that affect domain rank-
ing. We aim for our work to drive further investigation into
top list construction and top list use in Internet measurement,
security, and privacy research.

To start, we require a data source that reflects the ac-
tual usage of a domain. For this, we use passive DNS (like
Umbrella). We describe our PDNS dataset in Section 4,
which provides large-scale global visibility into domain ac-
tivity. Passive DNS has been used extensively in prior re-
search [14–16, 18, 24–27, 53], affording other researchers an
opportunity to adopt our domain ranking method on other
DNS datasets. In contrast, a method requiring proprietary
data (e.g., Alexa) cannot be broadly used.

By using PDNS data, we aim for our list to rank the most
used domains, with DNS lookups as proxies for usage. From
PDNS data for a domain, we can observe two metrics that in-
tuitively reflect domain usage: 1) the number of IP addresses
that perform lookups, and 2) the lookup volume. More IP
addresses querying for a domain indicates that the domain
is more widely used. Meanwhile, the lookup volume for a
domain correlates with how strongly IP addresses prefer the
domain, as more heavily used domains should be queried
more frequently. We aim to incorporate both metrics in our
ranking method, rather than only one, for several reasons4.
First, the philosophical motivation behind using both metrics
is to more comprehensively characterize domain usage pat-
terns compared to using a single metric, as “usage” can be
defined by both how widely something is used, as well as how
frequently/intensely it is used. In addition, using both metrics
rather than only one can also improve manipulation resis-
tance, one of our core design goals, as attacks must exhibit
both high lookup volume and high IP diversity, both of which
incur costs. Finally, using both metrics can also provide more
stability than using a single metric, as the resulting ranking
would be less sensitive to minor fluctuations along only one
metric/dimension. However, aggregating the two metrics is
non-trivial. Directly statistically aggregating the two metrics
for a domain lacks a clear meaningful interpretation, as it is
unclear how to compare two domains where one has higher
lookup volume but lower IP diversity, and the other has higher
IP diversity but lower volume.

Instead, we develop an interpretable ranking approach
where each client IP address expresses their individual do-
main preferences, and the global top list ranking is based
on aggregating these domain preferences across all IP ad-
dresses through a voting scheme (where voting has been a
well-studied approach for combining preferences across multi-
ple units). Thus, our ranking can be interpreted as an Internet-
wide election (across IP addresses) on popular domains. More
specifically, our ranking measures the most used domains as

4We note that Umbrella is based on these two DNS metrics as well,
although its method is not public.
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reflected by DNS lookups in PDNS data (thus the per-IP do-
main preferences and the aggregated IP address preferences
are factored in). In Section 5.1, we describe how we determine
the per-IP domain preferences using domain lookup metrics.
We discuss potentially weighting IP addresses in Section 5.2,
as not all addresses are equal in their user populations. Finally,
in Section 5.3, we adopt voting theory to aggregate IP address
preferences, leveraging existing voting mechanisms for reach-
ing joint decisions across heterogeneous populations. This
multi-phase approach allows us to incorporate information
from both DNS-based domain usage features in determining
a top list ranking. In Section 6, we evaluate the properties
and parameters of our top list in comparison to existing lists,
demonstrating its practical value for Internet measurements.

4 Data Source

Here, we detail our PDNS dataset and discuss the considera-
tions for its use.

4.1 Our PDNS Dataset
Our study is based on continuous large-scale PDNS data
from the public DNS resolvers5 for 114DNS, the largest DNS
provider in China [1]. The dataset contains all client DNS re-
quests, as well as the DNS responses returned by the 114DNS
recursive resolvers. Due to ethical considerations, we avoid in-
vestigating DNS behavior for specific IP addresses and focus
on aggregate analysis.

The PDNS data used in this study is collected from
Nov. 2020 to Apr. 2021. On average, the PDNS dataset con-
sists of ∼500B unique DNS requests from 70M clients per
day, for∼550M FQDNs. These FQDNs are distributed across
an average of 13M SLDs a day, and cover 99.9% of IANA
TLDs [28]. (Note that our daily data volume remains con-
sistent over time.) This PDNS data provides large-scale and
longitudinal visibility into domain lookup activities, partic-
ularly compared to the datasets used by other top lists and
PDNS data used in prior work [14–16, 18, 24–27, 53]. Com-
pared to the PDNS data reportedly used for Umbrella, our
PDNS data has 5M more IP addresses and 2.5× more DNS
requests observed per day [51, 52]. While Alexa does not use
PDNS, it is reported to collect telemetry from about 705K
distinct clients [21,23], two orders of magnitude less than our
data. We also briefly note that our PDNS data is more than
35× larger than the largest PDNS dataset we identified used
in prior research [24].

4.2 Considerations for using PDNS
Data Skew. Using a PDNS dataset, our top list reflects do-
main usage based on DNS lookup metrics. These metrics are

5Resolver IP addresses:114.114.114.114 and 114.114.115.115

dependent on the PDNS vantage point though, and different
PDNS vantage points may observe varying levels of DNS
traffic for a domain. We recognize that as 114DNS is a Chi-
nese DNS provider, the client population exhibits regional
biases (e.g., skewing towards users in Asia), which can affect
which domains are most highly ranked (e.g., domains popu-
lar in Asian countries). Such biases are inherent to any data
source used for top list construction though (including Alexa,
Umbrella, and prior PDNS datasets), as no network traffic
dataset offers a truly global vantage point.

To better understand the nature of our dataset, we randomly
sampled one day of PDNS data to investigate the geolocation
distribution of client IP addresses. Using the Maxmind geolo-
cation database [6], we identified that 8.2% of IP addresses
were located outside of China, and 12.6% were not in Max-
mind but we suspect are also external to China (as we also fur-
ther used IPIP [5], a Chinese-centric IP geolocation database,
and did not find these IP addresses either). Though our data is
skewed towards Chinese clients, it consists of a large portion
of clients in other countries (∼17M IP addresses) still provid-
ing domain lookup activities. We further use the Maxmind
ISP database [6] to analyze the distribution of our clients
across networks (using the same sampled day). Over 85% of
queries originate from telecom companies (e.g., China Tele-
com/Unicom, Viettel Group, Vodafone Idea), which include
both residential and enterprise users. Other notable networks
observed include those of research institutions (e.g., China
Education and Research Network Center, National University
of Singapore, University of California San Diego, MIT, and
Stanford) and large cloud service providers (e.g., Amazon,
Google, Oracle, Alibaba, Tencent).

Given the scale and scope of our dataset, we believe it is
still a meaningful dataset for understanding DNS dynamics
and leveraging DNS data for constructing a top list. We also
note that the primary focus of this work is not to characterize
this specific PDNS dataset, but rather to develop a general
method for top list construction, which can apply broadly to
other DNS datasets (which will exhibit their own skew).

Data Analysis Time Window. Any domain lookup metric
must be defined over some time period. Here, we prioritize
daily PDNS snapshots, as such granularity is fine-grained
enough to capture the daily patterns of users/devices, such
as behavioral changes on weekdays versus weekends, or spe-
cial events and holidays. One can aggregate rankings across
multiple days [39] if long-term rankings are desired.

DNS Caching. DNS employs caching, where client
lookups that match unexpired records in a DNS cache will not
result in further DNS requests. This naturally impacts analysis
based on DNS request metrics observed at a resolver. Existing
DNS-based domain ranking methods [20, 44] do not factor
in DNS caching and the Time-to-Live (TTL) values. Prior
work [27, 40] proposed modeling the true DNS query rate
with a Poisson distribution. We investigate the characteristics
of our PDNS dataset to understand if we can reliably factor
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in DNS caching (details are in Appendix E). Ultimately, we
encounter three significant issues with using TTLs to predict
caching behavior: CNAME caching discrepancies across op-
erating systems, different client-specific caching policies, and
unclear DNS cache boundaries. These issues cannot be re-
solved using DNS-based data, which provides visibility only
at IP address granularity rather than client granularity. Thus,
we empirically justify not factoring in DNS caching in our
ranking, as we lack a reliable way to do so.

5 Voting-Based Domain Ranking

Sections 4 discussed our PDNS data characteristics and con-
siderations when using this data. Here, we introduce our
voting-based domain ranking method. In Section 5.1, we first
determine the domain preferences of individual IP addresses.
In Section 5.2, we discuss weighting IP addresses to account
for the differences in the number of clients that might reside
behind a single address. Finally, in Section 5.3, we investigate
aggregating the domain preferences across all IP addresses
using a voting scheme, producing a global domain ranking.

5.1 IP-Specific Domain Preferences
We start by considering how to calculate the domain prefer-
ences for a single IP address. From the DNS requests observed
from an IP address (within a daily snapshot, as discussed in
Section 4.2), we can measure the request volume observed for
each domain. Beyond only considering volume, we can also
quantify the duration over which the requests are made, which
we term the active duration. Intuitively, the clients residing
on an IP address should more strongly prefer domains that
they request more frequently and more consistently over time.

Request Volume γ. For an address-domain pair, the num-
ber of requests reflects the address’s preference for the do-
main. We observe that request volume exhibits a long tail,
where there are few requests for most pairs, but some pairs
exhibit up to millions of requests. When considering request
volume metrics, to avoid significantly overweighting the mi-
nority of pairs with large request volumes, we apply the com-
mon log1p(x) = ln(x+1) data smoothing function to request
volume values. This data smoothing also aids manipulation
resistance by preventing an attacker generating a high request
volume from obtaining an overly high request volume metric
(i.e., with smoothing, generating multiple times more requests
does not increase γ by the same extent). Figure 1(a) plots the
PDF of γ values for pairs on a randomly sampled day.

Active Duration α. Intuitively, popular domains are con-
sistently queried over time. Thus, we also consider the dura-
tion over which we observe DNS requests for a domain, and
for domain preferences, we weight domains higher that are
regularly queried. As a side effect, manipulation efforts are
incentivized to continue for longer periods of time, which can
increase attack costs and the likelihood of detection.
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Figure 1: PDFs of the log1p-smoothed numbers of requests
(γ values across address-domain pairs) and requested SLDs
(δ values across addresses), on a randomly sampled day.

To measure active duration, we split DNS requests into
different time intervals (we discuss our choice of using 10-
minute intervals in Section 6.1). We consider an <IP address
i, domain d> pair as active within an interval if we observe
a DNS lookup from address i for domain d within that time
window. For an address i, the active duration of domain d is
the total number of intervals that <i, d> is active for. Thus,
more regularly queried domains will be active for more in-
tervals. Inspecting the distribution of active durations on a
randomly sampled day (other days exhibit similar behavior),
we observe that ∼60% of pairs are active for one 10-minute
slot, indicating that most requests are bursty and only a few
domains are queried regularly over time.

Combination. With two domain preference metrics, active
duration α and (smoothed) request volume γ, we need to
combine them to reach the overall domain preferences for an
IP address. First, to scale each metric equivalently, we max-
min normalize each metric across domains in DNS requests
for a given IP addresses. We then determine an aggregate
domain preference metric as the geometric mean of α and γ

(as a geometric mean essentially scales the request volume
by the active duration, factoring in both metrics). We then
sort the aggregate domain preference metrics to determine the
domain preference ranking for the address.

5.2 IP Address Weighting

With PDNS data, we observe requests at the IP granularity
(as also discussed in Section 4.2). However, multiple client
devices may reside behind an address, each generating in-
dependent DNS requests. Philosophically, treating each IP
address equally when computing domain ranks could unfairly
represent the contributions of individual clients’ preferences.
Thus, we explore weighting addresses to account for their
differing client populations. PDNS data does not provide visi-
bility behind IP addresses. However, we perform a best-effort
estimation by assuming that an address’s client population
correlates with the diversity of domains resolved via DNS as
well as the address’s total request volume.

Domain Diversity δ. Our intuition is that domain diversity,
the number of distinct domains requested by an IP address,
positively correlates with the number of clients behind the
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Figure 2: CDF of the #SLDs to #FQDNs ratio across IP
addresses on a randomly sampled day, distinguishing between
addresses requesting 1K+ FQDNs from other addresses.

address (as more clients with their own user behaviors ex-
hibit more diverse domain requests). To distinguish distinct
domains, we could consider distinct SLDs or FQDNs. We
observe many addresses that request many FQDNs which
correspond to few SLDs. Such behavior actually suggests low
domain diversity, often accessing the same Internet services.
Figure 2 depicts the CDF of the #SLDs to #FQDNs ratio for IP
addresses on a randomly selected day (other days exhibit sim-
ilar behavior). We observe that few addresses (∼10%) request
the same number of FQDNs and SLDs. Notably, addresses
that request more than 1K FQDNs correspond to significantly
fewer (often ∼20% as many) SLDs. Thus, we choose to dis-
tinguish distinct domains at the SLD granularity, and measure
an address’s domain diversity in terms of its number of SLDs
requested. This choice also avoids overweighting addresses
(such as an attacker’s) that simply request many FQDNs for a
small set of SLDs. There is again a long-tail distribution ob-
served for #SLDs, so to avoid overweighting the addresses in
the long tail, we again use the log1p function for smoothing
domain diversity values (with the PDF of address δ values on
a randomly selected day shown in Figure 1(b)).

IP Address Total Request Volume µ. For an IP address,
the maximum number of requests for any given domain and
the total number of requests among all domains intuitively
correlate with the number of clients on that address. However,
as we will weight addresses relative to each other, a metric
that is harder for an attacker on one address to manipulate
relative to other addresses is preferable. If using the maximum
number of requests for a domain per address as a weighting
factor, an attacker would only need to generate more requests
for a target domain than most other addresses (for a domain)
to weight attack addresses more. In comparison, if using the
total request volume as a weighting factor, an attacker would
need to generate more requests than other addresses altogether
to manipulate weighting, a higher bar. Thus, we choose to
use total request volume as a weighting factor. We observe
a long tail in the distribution of total request volume across
addresses, and again apply log1p data smoothing to avoid
overweighting addresses in the long tail.

Combination. As with domain preferences, we have two

weighting factors that must be aggregated to determine an ad-
dress’s weight. We again normalize both to scale each metric
equivalently. Since an address’s weight should never be zero
(otherwise it does not contribute to the global ranking), we
use max normalization (rather than min-max normalization).
Specifically, δ and µ are scaled to range between [1/δmax,1]
and [1/µmax,1], respectively. Then, we compute the geomet-
ric mean of the normalized δ and µ values to determine an
address’s weight. Using a geometric mean intuitively scales
an address’s total request volume by its domain diversity, such
that addresses with higher volumes and higher diversity are
weighted more (correlating with larger client populations).

5.3 Voting across IP Addresses

Having established per-IP domain preferences (as well as po-
tential weights for addresses to account for differing client
populations), we require a method for aggregating these pref-
erences across addresses, for ranking the most preferred (pop-
ular/used) domains. A voting scheme serves as a natural so-
lution for such preference aggregation, as it combines the
preferences for candidates (domains in this case) for multiple
voters (IP addresses in this case) and determines a global rank-
ing of candidates. Rely on a voting mechanism also allows us
to tap into the existing voting theory literature, which has ana-
lyzed the computational complexities and election properties
of various schemes [17], as well as their resistance to manip-
ulation attempts [36]. Philosophically, voting to determine a
global top list seems apropos, as voting is a social process and
domain ranking is ultimately an application of social choice.

In our application of voting, we have both a large number
of voters (tens of millions of IP addresses) and a large number
of candidates (hundreds of millions of FQDNs). Thus, we
require a computationally efficient voting method. While a
diverse set of voting schemes exist, we choose to concentrate
on those based on scoring rules, rather than pairwise compar-
isons. While simpler, a scoring-based scheme exhibits com-
putational complexity that grows linearly with the number of
candidates/domains, whereas a pairwise comparison scheme
(e.g., Condorcet voting [54]) exhibits quadratic growth.

Besides complexity, we also require three properties for a
voting mechanism, which are not provided by all schemes:
1) The voting method must allow a voter to vote for multiple
candidates, as we consider multiple domains queried by each
IP address. This property excludes Plurality/FPTP voting,
where each voter chooses a single candidate; 2) We avoid
rating-based voting methods where each voter assigns a score
to all candidates. Such methods would require a per-IP scor-
ing function that provides equivalent interpretation across all
addresses, which is unsuitable for addresses in practice which
have different user populations, DNS activities, and domains
requested; 3) We cannot use a voting scheme that involves
multiple voting rounds (e.g., run-off voting), as we have only
one static set of preferences from our voting IP addresses.

USENIX Association 31st USENIX Security Symposium    631



We identify four well-established voting schemes that sat-
isfy our time complexity requirements and desired properties.

Approval. With Approval [42], each voter can vote (give
approval) to any number of candidates. Candidates are ranked
in order by the number of approving voters (with ties broken
arbitrarily). In our application, this method is equivalent to
only considering the number of IP addresses that query for a
domain. If factoring in IP weighting, then a domain’s score
is the sum of the weights of approving IP addresses. While
simple, this voting scheme does not leverage information from
per-IP domain preferences (although we will still evaluate it).

Borda. Using Borda count [42], each voter ranks the can-
didates/domains, and a candidate receives one point for every
other candidate ranked below it by the voter. Candidates are
then ranked in order by the sum of points across all voters. In
our application, as the number of domains requested by IP
addresses vary, we adopt truncated voting [42], where each
voter ranks a threshold number of candidates. In Section 6.1.1,
we evaluate different truncation thresholds.

Dowdall. Dowdall [42] is a variation on Borda, where voter
points are instead assigned following Zipf’s law. A voter’s
top-ranked candidate receives one point, whereas the N-th
ranked candidate receives 1/N points. Candidates are again
ranked in order by the sum of points across all voters. Unlike
Borda, Dowdall does not require truncated voting, as it has
a score cap (of one) regardless of the number of candidates.
However, we note that the score differences between a voter’s
consecutively-ranked candidates are more extreme than with
Borda (i.e., a voter’s top-ranked candidate receives twice as
many points as the second-ranked candidate under Dowdall,
whereas the difference is only 1 point under Borda).

Bucklin. With Bucklin, voter top choices are first consid-
ered. One candidate wins if it has a majority among voters. If
not, voter second choices are added into consideration, and
the candidate wins if it now has a majority among voters.
This process continues until a candidate obtains majority6.
We note that once one candidate has a majority among voters,
Bucklin is equivalent to a truncation of Approval where each
candidate/domain receives one point. Given the similarities,
we elide further investigation of Bucklin.

6 Evaluation

Here, we evaluate our voting-based domain ranking method,
investigating how different design decisions affect top list
properties, and how our domain top lists compare to existing
ones. We also characterize the top domains ranked by our
method. Recall that our ranking method involves domain pref-
erences, IP weighting, and a voting mechanism. We consider

6In our PDNS dataset, on average, a daily Bucklin winner can be elected
after approximately 54 rounds with IP weighting (i.e., the top 54 domains
in each IP address’s preference ranking are counted), and 200–250 rounds
without weighting. If all domains are counted, there are multiple domains
with a majority of the votes.

two main design decisions: use of IP weighting and the voting
method chosen.

Note that as our input data collection and top list construc-
tion methods are openly described (although the raw PDNS
data is not publicly available) and should remain constant,
we argue that our top list provides more construction trans-
parency and consistency compared to existing top lists (e.g.,
Alexa and Umbrella, which remain black boxes, and Tranco,
which relies on other lists). Thus, for evaluating top lists prop-
erties, we focus the remainder of this section on manipulation
resistance and stability properties.

6.1 Ranking Implementation and Runtime

We first discuss our system setup and computational costs for
processing PDNS data and computing a daily top 1M list.

We receive real-time PDNS data from 114DNS using
Apache Kafka, the open-source distributed data streaming
platform. The data stream is divided into 10-minute chunks
that we process immediately. Given this data chunking, we
naturally consider a domain’s active duration (used when com-
puting per-IP domain preferences, as discussed in Section 5.1)
in terms of 10-minute intervals. We extract the relevant fields
from all DNS record (e.g., A and CNAME) requests for our
ranking methods, which amount to ∼800 GB per day.

We execute our ranking method in a distributed fashion
using Apache Spark on YARN, with 300 executors each con-
figured with 2 cores and 4 GB of memory. We perform a
minor optimization before the voting phase by filtering out
domains with fewer than 15 total DNS requests or requested
by fewer than 15 IP addresses, as this reduces the voting
phase’s computation and these domains will not make it into
the top 1 million domains (this filtering leaves approximately
7M domains a day). Our total end-to-end ranking computation
takes 1.5 hours. Over half of the runtime is for per-IP domain
preference calculations, the most computationally intensive
component. IP weighting requires about a quarter of the time,
whereas the voting phase is quick (∼5 minutes).

6.1.1 Borda Truncated Voting Threshold

Recall from Section 5.3 that when using Borda voting, one
can truncate the IP-specific domain preferences to a threshold
length to account for varying numbers of domains requested
by different IP addresses (other voting schemes do not require
such truncation, as their point ranges are set and are not de-
pendent on voting behavior). Here we define BordaN as our
domain ranking method using Borda voting with a truncation
threshold of N (where N = f ull indicates no truncation), and
investigate the impact of different threshold values.

Consider an IP address that ranks domains A and B as its
first and second preference, respectively. (The following ar-
gument still holds for lower-ranked adjacent domain pairs.)
Under Borda voting with truncation threshold N, this address
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awards N voting points to A and N− 1 points to B. While
the raw difference between A and B’s points is always one
irrespective of N, the relative difference will be 1

N . As a con-
sequence, larger truncation thresholds N result in less impact
from IP-specific domain preferences, and more emphasis on
the number of addresses voting/querying for a domain (as
adding one voting address may contribute far more points to
a domain than obtaining a higher preference ranking at an
already-voting domain). Thus, large N values shift Borda to
behave more similarly to Approval, which disregards address
domain preferences.

We empirically confirm the similarities between Bordafull
and Approval by comparing the top lists produced by the two
methods. With Bordafull, N is set to the maximum number of
FQDNs requested by any IP address. In our dataset, we ob-
serve that N is consistently large (1.08M on average, and can
be up to 4.5M). When using IP weighting (results are similar
without weighting), we find on average a 99.98% intersec-
tion of the daily top 1K domains for Bordafull and Approval
(Kendall’s τ coefficient7 = 0.99), and a 97.84% intersection
of the daily top 1M lists (τ = 0.95).

On the other hand, small N values limit the degree to which
addresses can express their domain preferences. We observe
that a small fraction of addresses request high numbers of
FQDNs (resulting in the high N values when using Bordafull),
but 91% of addresses request up to 1K FQDNs daily (on
average). In comparison, only half of IP addresses request
100 or fewer FQDNs a day.

We consider N = 1K to be a philosophically reasonable
threshold8, as it captures the full domain preferences for
the vast majority of addresses without being too large of
a value9 (which would minimize the value of domain pref-
erences). In our subsequent evaluations though, we still con-
sider N in {10,100,1K, f ull}. As we will discuss, we find
that N = 10 and N = 100 result in poor manipulation resis-
tance, and Bordafull shares undesirable stability characteristics
with Approval. Thus when using Borda voting, we will focus
on evaluating Borda1K (often relegating evaluation results for
other Borda variants to Appendix F).

6.2 List Property: Manipulation Resistance

Here, we evaluate the manipulation resistance of our voting-
based top lists, across different top list parameters (IP weight-
ing and voting methods) and in comparison to the existing
top lists (i.e., Alexa, Umbrella, and Tranco). As discussed

7Kendall’s τ coefficient [31] is used to measure the similarity between
two ordered lists, and ranges from −1 to 1. The closer τ is to 1, the more
similar the ordered lists are.

8Note that the computational costs of using different threshold lengths do
not vary significantly, and thus is not a major factor in the design decision.

9The distribution of the number of FQDNs requested by IP addresses
exhibits a long tail. Thus, we observe that N values larger than 1K (e.g., 10K,
100K) provide diminishing returns in capturing the full domain preferences
of more addresses, and we did not explore these thresholds.

earlier, when evaluating Borda, we will focus on Borda1K,
relegating results for other Borda variants to Appendix F. We
will briefly evaluate using Dowdall, but we identify that it
produces top lists with significantly lower manipulation re-
sistance than Borda1K. Approval also exhibits undesirable
properties (as discussed in Section 5.3), so we relegate its
analysis to Appendix F.

Threat Model. We consider an attacker that aims to manip-
ulate our top list to obtain a high ranking for a target domain.
The attacker has a presence on a number of IP addresses (e.g.,
through compromised hosts, botnets, cloud hosting, or VPNs).
To manipulate our top list, the attacker generates DNS re-
quests on those addresses (to our PDNS vantage point) for
two potential purposes. First, the attacker could strive for a
higher address-specific domain preference rank for its target
domain, which requires sending DNS requests for the tar-
get domain10. We will call these domain preference boosting
DNS requests. Second, when using IP weighting for top list
construction, the attacker could also generate DNS requests
to other domains to increase their address’s weight, which we
will call weight boosting DNS requests.

In this section, we consider different attacker variants, in-
cluding different numbers of attack IP addresses, whether
attackers fully control traffic from those addresses (as attack-
ers may reside on addresses with benign users generating their
own traffic), and different numbers of DNS requests generated
(for both domain preference and IP weight boosting).

6.2.1 Design Decision: Using IP Weighting

Isolated Attackers. We first investigate the impact that IP
weighting has on our top lists’ manipulation resistance. To
isolate IP weighting’s effect, we consider an attacker that has
full control over its IP addresses, and thus can readily rank its
target domain as the top preference for its addresses (eliminat-
ing address domain preference as a variable) and optimize its
addresses’ weights (based on the number of weight boosting
DNS requests it generates). Then, we empirically evaluate
how high the attacker can manipulate its target domain’s rank-
ing in both the weighted and unweighted top lists, depending
on the number of attacker addresses and the number of weight
boosting requests generated. We compute the average attacker
domain’s ranking across the daily top lists constructed from
our PDNS data using different voting methods. Figure 3 de-
picts the average attack success for different top lists (created
using Borda1K and Dowdall) and attack parameters (the re-
sults of Approval, Bordafull, Borda100 and Borda10 are shown
in Figure 11 in Appendix F).

For Borda1K top lists, we observe that without IP weighting,
an attacker only requires 45 IP addresses (on average) to enter
the top 1M ranking. Note that this attacker need not generate
any weight boosting requests, as the top list is unweighted. In

10For top lists constructed using Approval, only one DNS request to the
target domain would be needed, as address domain preference is not involved.
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Figure 3: Average rankings of the attacker’s target do-
main, depending on different top list construction parameters
(weighted versus unweighted, Borda1K versus Dowdall vot-
ing) and attack strengths (different numbers of attacker IP
addresses and weight boosting DNS requests). Curves labeled
as “W-" represent weighted top lists, and the number of weight
boosting requests are listed in parentheses (“Max” indicates
an attacker obtaining the maximum normalized weight).

comparison, with IP weighting, the identical attack (without
weight boosting requests) requires an average of 495 IP ad-
dresses to enter the top 1M, an order of magnitude increase.
For an attacker to achieve similar manipulation rankings on
a weighted list compared to an unweighted one, using the
same number of attacker IP addresses, we can see that they
require about 10K weight boosting requests for each attacker
IP address, a more resource-intensive attack. (We observe the
same trend for weighting with other voting methods, including
Dowdall, as visible in Figures 3 and 11.)

We do identify that weighting is not strictly better for ma-
nipulation resistance, for all voting methods. As seen in Fig-
ure 3 (and Figure 11 for other voting methods), if an attacker
sends enough weight boosting requests (e.g., 1M requests per
address), they can obtain higher rankings (with the same num-
ber of attacker addresses) in the weighted top list than in the
unweighted list. Thus, there exists a trade-off where weight-
ing improves manipulation resistance against low-resource
attacks (requiring few DNS requests per attacker address), but
affords higher upper-bound success to high-resource attacks.

Overall though, we recommend using IP weighting for
two reasons. First, the philosophical motivation behind ap-
plying weighting is to more realistically reflect IP charac-
teristics, more heavily weighting addresses with presumably
more clients, treating clients fairer. Second, even with strong
attacks that are more successful against weighted top lists
versus unweighted ones, the degradation due to weighting
is relatively limited. For example, with weighted Borda1K,
attackers with 100 addresses who obtain maximum address
weights (which may not be practical, as it requires millions
of weight boosting requests per address) can achieve a rank-
ing about half that without weighting (150K versus 300K,
respectively). Meanwhile, without weighting, the lowest-cost
attack (requiring one DNS request to the target domain per at-
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Figure 4: CDF of the # of weight boosting requests that at-
tackers must send per IP address to obtain a desired IP weight,
for addresses in a randomly sampled day of our PDNS data.

tacker address) achieves an order of magnitude better ranking
on the unweighted list than the weighted one (as discussed).
Thus, without weighting, attackers need not launch resource-
intensive attacks to achieve high rankings, whereas weighting
forces them to launch such attacks to obtain higher rankings.
Therefore, we focus on weighted top lists moving forward.

Co-located Attackers. We also consider an attacker that
does not have full control over its IP addresses, where be-
nign co-located clients may generate their own traffic which
contributes to the addresses’ weights. We randomly sampled
one day of PDNS data to simulate this scenario. In Figure 4,
we plot the distribution of the number of weight boosting
requests an attacker must send per address to obtain a certain
IP weight (factoring in benign traffic). We observe that attack-
ers can obtain low weights (e.g., 0.2) without many weight
boosting requests (less than 100 requests), but even moderate
weights require a significant number of requests. For example,
over 10K requests are typically necessary to obtain a weight
of 0.6 and approximately 1M requests for a weight of 0.8.
Thus, even with benign traffic, attackers must generate signif-
icant amounts of weight boosting requests to obtain high IP
weights, and our support for the use of IP weights remains.

6.2.2 Design Decision: Choice of Voting Method

In Figure 3, all Dowdall curves are to the left of all Borda1K
curves, regardless of weighting or attacker parameters, indicat-
ing that top lists constructed using Dowdall are significantly
more vulnerable to manipulation than Borda1K-based top lists.
As we do not identify additional properties where Dowdall
outperforms Borda1K, such as with stability (as will be dis-
cussed in Section 6.3), we do not advocate for the use of Dow-
dall over Borda1K. We observe that Borda10 and Borda100
behave similar to Dowdall, with significantly worse manip-
ulation resistance (as shown in Figure 11) and no favorable
properties compared to Borda1K (as will be discussed in Sec-
tion 6.3). Thus, we also prefer Borda1K over these two Borda
variants. As discussed in Section 6.1.1, Bordafull and Approval
behave similarly. We actually observe that they exhibit slightly
better manipulation resistance compared to Borda1K, as shown
in Figure 11. However, as will be discussed in Section 6.3,
they exhibit significantly worse stability compared to Borda1K,
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Figure 5: Average rankings of the attacker’s target domain,
depending on its per-address preference ranking and the #
of attack addresses (when using weighted Borda1K). We plot
curves for the attacker addresses exhibiting minimum and
maximum weights, representing attack lower bound and up-
per bound success, respectively. Note that as we consider
domain preferences varying up to 1K, we consider the mini-
mum weight where 1K requests are sent on attack addresses.

with approximately half of the top 1M list churning daily.
Thus there is a trade-off between stability and manipulation
resistance. We believe that Borda1K serves as a reasonable
operating point, balancing manipulation resistance against
stability while factoring in address-specific preferences.

Influence of Address-Specific Domain Preferences.
Here, we investigate the influence of the attacker’s address-
specific domain preference rankings, focusing on Borda1K (as
justified above). If an attacker fully controls an address, they
can readily place their target domain as the address’s top pref-
erence (as analyzed in Section 6.2.1). Thus here we consider
only scenarios where the attacker is co-located with other
users on the address, and must compete for the preference
rankings. To isolate the effect of address domain preference,
we evaluate cases where the attacker addresses have either
the minimum or the maximum possible weight, and vary the
address preference ranking of the attacker’s target domain.
The minimum address weight case corresponds to a lower
bound on attack success, whereas the maximum weight case
reflects an upper bound.

In Figure 5, we plot the average daily rank of the attacker’s
target domain, varying the number of attacker addresses and
the address preference ranking of the target domain, using
weighting and Borda1K voting. As expected, as the target
domain’s address preference ranking increases (with the same
number of attacker addresses), it achieves a higher overall top
list rank, although improving preference rankings results in
increasingly diminishing returns.

To understand the attack strength needed to obtain a cer-
tain address preference (when attackers are co-located with
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Figure 6: CDF of the # of domain preference boosting requests
that an attacker must send to obtain a desired per-address pref-
erence ranking (ranked first versus 10th) for its target domain,
on a randomly sampled day. α = attack active durations.

benign clients), Figure 6 shows the distribution of the number
of domain preference boosting requests that the attacker must
send for addresses on a randomly sampled day, while varying
the attack’s active duration and the targeted address-specific
preference ranking. For about 20% of addresses, an attacker
can readily rank its target domain first with just 1 request.
However, for most addresses, attackers must generate signifi-
cant numbers of preference boosting requests to obtain a top
preference ranking. Attacks that are active over an entire day
still require hundreds to thousands of preference boosting
requests to secure a top preference ranking. With lower active
attack durations, attacks require significantly more requests
to obtain a top preference. Thus, attackers must expend addi-
tional resources (sending more requests and remaining active
for longer) for attack success when using domain preference.

6.2.3 Comparison to Existing Top Lists

Next, we compare the manipulation resistance of our top list
(created using weighted Borda1K) to Umbrella and Tranco.
Alexa does not use PDNS, so a direct comparison is infeasible,
although Alexa is easy to manipulate even using a single
IP address and a limited number of requests (as discussed
in Section 2). Without visibility into Umbrella’s data and
method, we must compare through a real-world evaluation,
performing (controlled) manipulation efforts and observing
the differences in manipulation success. As mentioned in
Section 2, we identified an additional method for easier DNS-
based ranking manipulation (i.e., using open DNS resolvers to
obtain IP diversity). Here we use this approach for evaluating
top list manipulation with many IP addresses.

Experiment Method. We use two target domains under
our control for testing manipulation efforts. For each attack
IP address (i.e., an open DNS resolver), we trigger five DNS
lookups for each target domain to be sent to both Umbrella
and 114DNS’s DNS resolvers, evaluating up to 20K attack
addresses (while larger attacks are possible, we limit our eval-
uation due to ethical considerations). In essence, we cause
requests from 20K different IP addresses to appear in Um-
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brella and 114DNS’s PDNS data, performing identical attacks
on both top lists. We then monitor the target domains’ rank-
ings (performing our evaluation from Apr. 8–20, 2021). The
manipulation approach is detailed in Appendix D.

Ethics. We conduct our manipulation experiment on our
own domains that host webservers indicating that they are
test servers. Using only two domains should have negligible
impact on top lists overall. We also send a small number of
requests per evaluated IP address, and rate limit our total re-
quests generated to Umbrella’s and 114DNS’s DNS resolvers
to minimize the traffic load induced.

Results. The two target domains successfully achieved
a consistent ranking within Umbrella’s top 10K each day
(reaching a rank as high as 2,859). For our recommended top
list construction (weighted Borda1K), the two target domains
obtained stable rankings between 29K to 41K (reaching at
most a rank of 29,486) under the identical manipulation effort.
While our comparison is limited to this black box evaluation,
we observe that our ranking appears to be significantly more
manipulation resistant compared to Umbrella (and Alexa).

When comparing to Tranco, we must combine Alexa and
Umbrella manipulation. We note that default Tranco combines
the Alexa, Umbrella, and Majestic top lists over a 30-day win-
dow. However, for a more direct and fair comparison of the
two top list methods, we use daily snapshots of Alexa and
Umbrella as Tranco input sources. Using daily snapshots al-
lows us to directly compare the manipulation resistance of
Tranco’s algorithm with ours on an equal time scale. We also
exclude Majestic when computing Tranco’s rankings, as we
focus on top lists that rank domains by user visits/traffic (as
discussed in Section 2.1). Including Majestic, which ranks
websites by their backlinks, further convolutes Tranco’s do-
main popularity interpretation.

Figure 7 depicts the Tranco ranking an attacker can obtain,
based on its manipulation of Alexa and Umbrella rankings.
Tranco proportionally reweights the contributions of the two
contributing top lists to account for the differences in list
sizes (we discuss Alexa’s size change in Section 2.2.1). Thus
Tranco manipulation success differs when targeting only the
Alexa top list compared to the Umbrella top list. In general,
an attacker must obtain the same target ranking in both Alexa
and Umbrella in order to obtain that target rank in Tranco.
However, we note that as Alexa and Umbrella are easily ma-
nipulated with low-resource attacks, transitively Tranco’s list
can likewise be affected.

From Alexa manipulation experiments (through the Certify
service), attackers can achieve a ∼2K ranking with ∼360K
requests (sent by one IP address). For Umbrella manipula-
tion, with 20K IP addresses (sending 5 requests each, 100K
requests in total), attackers similarly achieve a∼2.8K ranking.
As a result, such attack resources achieve a ∼2K ranking in
Tranco. In comparison, 20K IP addresses with 460K total
requests (matching the total request volume for both Alexa
and Umbrella manipulation) can only obtain a ranking of
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Figure 7: Rankings obtained in Tranco through Alexa (A)
and Umbrella (U) manipulation. Data points (X’s and O’s)
represent the observed Tranco rankings for our two targeted
domains (labeled as “Target”) during our Alexa and Umbrella
manipulation experiments. The dotted lines represent the ex-
trapolated relationship between a domain’s Alexa/Umbrella
ranking and its Tranco ranking (with “Dual” representing
concurrent ranking in both Alexa and Umbrella).

∼20K in our list. Thus, our ranking also demonstrates more
manipulation resistance compared to Tranco. (We note that
our list differs from Tranco in how it resists manipulation, as
discussed in Section 2.1.)

6.3 List Property: Stability

Here we evaluate how our design decisions impact the sta-
bility of our top lists. We quantify stability (similar to prior
work [39, 45]) as the percentage of a top list for one day that
remains on (i.e., intersects) the list for the next day (averaging
across days), considering different portions/ranking ranges of
the top list.

Design Decision: Using IP Weighting. We find that for all
voting methods, stability does not vary noticeably when using
weighting versus not (we elide details for space). There is
only a 1.5% difference in the average stability for our top 1M
list with and without IP weighting, when using Borda1K. This
likely arises because IP weights do not drastically shift from
one day to the next. As argued in Section 6.2, we advocate for
weighting as it provides both philosophical and manipulation
resistance benefits, without impacting stability.

Design Decision: Choice of Voting Method. Table 1 lists
the average stability of each top list across different ranking
ranges. Overall, we observe that Borda1K exhibits the highest
stability for its top 1M list, with over 80% of the list remaining
the same day-to-day. Approval exhibits the highest churn in
its top 1M list, with almost half of the list changing daily
(Bordafull behaves similarly, as discussed in Section 6.1.1).
Borda10 and Borda100 also exhibit high churn (although not
as extreme as Approval). We note that among the top 100K
(or more highly ranked domains), all lists are similarly stable.

Given that Dowdall, Borda10, and Borda100 exhibit lower
stability and worse manipulation resistance compared to
Borda1K (as evaluated in Section 6.2), we advocate for the use

636    31st USENIX Security Symposium USENIX Association



Ranking Our Top Lists Existing Top Lists
Range Borda1K Dowdall Approval Borda10 Borda100 Bordafull Alexa Umbrella Tranco

Top 1K 97.7% 97.7% 97.6% 97.4% 97.5% 97.6% 84.9% 94.9% 90.8%
Top 10K 97.2% 97.0% 97.0% 96.4% 96.8% 97.0% 73.8% 94.4% 85.6%
Top 100K 94.1% 94.2% 94.1% 91.5% 93.9% 94.1% 58.1% 93.0% 82.0%
Top 1M 81.7% 80.8% 51.3% 62.8% 79.2% 51.6% 44.9% 87.0% 72.7%

Table 1: For various top list constructions, we show the average list stability (the average percentage of intersecting domains for
a top list on consecutive days) for different portions/ranking ranges of the top list.

of Borda1K over these other voting methods. When compared
to Approval and Bordafull (which behave similarly), there is
a trade-off between manipulation resistance and stability (as
discussed in Section 6.2). While a less stable list is not neces-
sarily inherently worse or less realistic, prior work [39,45] has
noted the challenges in using unstable lists. Thus, we believe
Borda1K is a suitable voting method choice as it offers the
highest stability with reasonable manipulation resistance.

Comparison to Existing Top Lists. Again we compare
our top list (using weighted Borda1K) to existing top lists
(shown in Table 1). We note that existing lists use different
windows of data, and there exists a trade-off where top lists
built on longer-term traffic metrics can provide more stability,
but such lists are less responsive to real-time changes. Prior
work [39, 45] observed that Alexa exhibits low stability, with
its top 1M’s daily churn rates reaching over 50% of domains
(we observed an average stability of 45% over our 6-month
data analysis window). Umbrella exhibits higher stability
in its top 1M; we observed an 87% average stability, while
prior work [45] found a 20% churn rate (i.e., 80% stability).
However, Umbrella’s ranking is constructed on two-day win-
dows of data [39]. Our evaluated version of the Tranco top
1M, which combines Alexa and Umbrella (as discussed in
Section 6.2.3), exhibits a 73% average stability11 (between
Umbrella’s and Alexa’s stability rates). Thus, our chosen top
list, which also exhibits about 82% average stability in the
top 1M while using daily snapshots, offers favorable stability
and reactivity properties compared to existing lists. (We note
that regardless of Umbrella’s two-day data window, our list
also exceeds the stability of Umbrella in the top 100K.)

6.4 Top List Characteristics
We characterize our top list constructed using weighted
Borda1K (as previously justified), along dimensions evaluated
for existing top lists in prior work [39, 45].

Top List Similarity. Our top 1M list shares 14.4% of its
domains with Umbrella’s top 1M on average, and 18.3% with
Alexa. This is expected, as prior work observed limited over-
lap between existing top lists due to data source differences;
Alexa and Umbrella top 1M lists overlapped on only 15% of

11The default Tranco ranking, which combines Alexa, Umbrella, and Ma-
jestic over 30 days, exhibits a 1% daily churn rate, but given the much larger
data time window, it is significantly less reactive.
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Figure 8: CDF of the sizes of alphabetically-ranked domain
clusters among the different top 1M lists, for a randomly
selected day.

domains [45]. Our input data source has broad domain cov-
erage though (covering 100% of domains observed in Alexa
and Umbrella over our data analysis window).

SLD Coverage. Our top 1M list is distributed across an
average of 476K distinct SLDs a day, which indicates a wide
diversity of Internet services covered. Among the most popu-
lar domains (top 1K), services are more concentrated across
228 distinct SLDs (on average).

TLD Coverage. Our top 1M list covers on average 532
valid TLDs a day (∼36% of all TLDs [28]). Among the top
1K, there are 10 TLDs on average, which is similar to Um-
brella [45]. Note that high TLD coverage is not necessarily
desirable or expected for a top list, as prior work showed that
most traffic skews towards a small number of TLDs [39]. Our
input data source has broad TLD coverage though (covering
99.9% of TLDs, as discussed in Section 4).

Statistical Significance of Lower-Ranked Domains. In
Alexa, rankings beyond the top 100K have limited statistical
meaning, as these domains often receive only a single request
(as discussed in Section 2.2.1). For comparison, we evaluate
the statistical significance of our list’s lower-ranked domains.
Considering the bottom 100K domains in our top 1M list, we
receive enough data per domain to make meaningful analysis.
For a randomly selected day, we analyze the distribution of
the number of requests and IP addresses for these bottom
100K domains. The median number of requests per domain is
∼1.5K (ranging from ∼1K to over 1M requests). The median
number of addresses per domain is∼500 (ranging from∼100
to ∼10K). Thus, we observe a non-trivial amount of DNS
traffic for even the lowest-ranked domains in our list.
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Alphabetically-Ranked Domain Clusters. Prior stud-
ies [39, 43, 44] found that Alexa and Umbrella contain large
alphabetically-sorted clusters of domains, likely represent-
ing domains with identical ranking scores that are arbitrarily
ordered alphabetically. We evaluate the distribution of such
clusters for our top 1M list compared to Alexa, Umbrella, and
Tranco, depicted in Figure 8 for a randomly selected day. In
our list, the largest cluster of domains with identical ranking
scores is 9 domains, while Umbrella and Alexa exhibit clus-
ters of over 10K domains. Tranco largely avoids the massive
ranking clusters in Alexa and Umbrella, as it merges both lists,
interleaving domains from clusters within both lists. Nonethe-
less, Tranco still exhibits larger clusters than our list, with a
cluster of 31 domains. Thus, our list avoids ranking clusters
more than existing lists.

7 Conclusion

In this paper, we systematically explored the construction of
a robust, manipulation-resistant, and stable domain top list
from scratch. Motivated by the limitations of existing top lists,
particularly concerning a lack of transparency, low stability,
and easy manipulation, we designed a voting-based domain
ranking method where individual IP addresses express their
domain preferences, and a weighted vote is performed across
all addresses to construct a global top list. We realized our
list in practice using an extensive passive DNS dataset, and
evaluated how different design choices impact our list and
its characteristics. Ultimately, we identified trade-offs in the
behavior of our top list, although we recommend one specific
construction method that offers favorable stability and manip-
ulation resistance properties (while also being transparent).
We demonstrated that our top list outperforms existing ones
across the different list properties considered. Thus, we be-
lieve our top list construction method can serve as a valuable
contribution to the networking and security community.

This work is truly an initial exploration of the nature of
top lists though. Future work can investigate improving the
robustness of our list construction method (e.g., using hop-
count filtering [30] to combat IP spoofing attacks [46] on
PDNS-based top lists), better quantifying domain popularity
characteristics (e.g., characterizing user populations behind
IPs), and evaluating the longitudinal characteristics of do-
main ecology using our top list. We aim for our work to help
guide the use of Internet top lists for networking and security
research, while driving further investigation into this space.
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A Undisclosed Alexa Changes

Here we provide another example of an undisclosed Alexa
data collection change, demonstrating its top list’s lack of
construction consistency. Prior work [39, 45] observed that in
early 2018, the telemetry collected by Alexa from its browser
extension included the domains visited and a user ID specific
to the browser instance. At that time, Alexa did not limit the
number of user IDs observed on the same IP address nor filter
out any telemetry. Subsequent work [44] identified that Alexa
had begun filtering out repeat visits to the same domain from
the same user ID, presumably to combat manipulation efforts.
Aligning with this prior finding, in our reverse-engineering
of the Alexa browser extension in Dec. 2020, we identified
that the extension does not send telemetry to Alexa when a
URL is revisited within the same browser within a certain
time period. This notably filters out legitimate repeat visits to
domains by benign users, undercounting domain visits.

B Manipulating Alexa through Certify

Here, we detail our Alexa manipulation approach using
Alexa’s Certify service. We reverse-engineered the Alexa
Certify JavaScript snippet 12, as of Feb. 2021. When visit-
ing an Alexa Certified website, the Certify script provides
visit metrics to Alexa’s data collection endpoint along with
a user_cookie data field value used to distinguish site visi-
tors. Thus, one can forge fake visits to the Certified website
by generating requests to the Alexa data collection endpoint
using the same Certify ID (for the target website) with a large
number of unique user_cookie values. Figure 9 shows the
Alexa rankings we obtained for a manipulation experiment
targeting two of our own Certified domains (as discussed in
Section 2.2.1).

C Alexa’s Bias Towards Certified Domains

Here, we discuss our analysis of Alexa Certified domains.
Subscribers of Alexa’s Certify service can query whether

12https://certify-js.alexametrics.com/atrk.js
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Figure 9: Rankings obtained in Alexa using different num-
bers of forged distinct visitors to our two Alexa Certified test
domains (from Feb. to Apr. 2021).

other domains on Alexa’s top list are also Certified sites. We
subscribed to the Certify service and queried for the status of
domains in the Alexa top list on March 21, 2021. We identify
that 3.7K out of 487.8K Alexa top list domains (0.7%) use the
Certify service. While some such domains are highly ranked,
80% are ranked beyond the top 10K and nearly half beyond
the top 100K. Using our test domains subscribed to the Certify
service (as discussed in Section 2.2.1), we identified that as
long as a Certified domain receives even a single page visit in
a day, it will be ranked in the Alexa top list, demonstrating that
Alexa is biased towards Certified domains (although Alexa’s
methods remain undisclosed).

D PDNS Manipulation using
Open DNS Resolvers

To manipulate PDNS data collected at a recursive resolver
(e.g., those of Umbrella or 114DNS), without an attacker di-
rectly controlling a large number of distinct IP addresses, we
develop a manipulation approach that leverages open DNS
resolvers across the Internet. Figure 10 illustrates the manipu-
lation workflow.

We first directly send a query for a target domain to the
PDNS recursive resolver (Step 1), which will recursively
query the target domain’s authoritative name server (Step
2), caching the authoritative response (Step 3). We then recon-
figure the target domain’s authoritative name server on-the-fly
to be set to the PDNS recursive resolver itself (Step 4). We
query open DNS resolvers across the Internet for the target
domain (Step 5), each of which will subsequently recursively
query the domain’s authoritative name server, which is now
the PDNS resolver (Step 6). So long as the target domain’s
DNS record remains cached at the PDNS resolver, it will reply
to the open DNS resolvers with valid DNS responses. From
the PDNS data collection perspective, the recursive resolver
has received and responded to DNS lookups for the target
domain from various IP addresses (belonging to open DNS
resolvers), thus manipulating the PDNS data (Step 7). It is
critical that the target domain’s DNS record is cached at the
PDNS recursive resolver throughout the manipulation effort.

www.example.com

Attacker
114DNS/Umbrella
Recursive Resolver

Authoritative 
Name Server 

ns.example.com

Cache

…

open DNS
resolvers

Convert ④

DNS lookup through 
114DNS/Umbrella ①③

DNS lookup through
Open DNS resolvers⑤ ②

⑥

⑦

Figure 10: PDNS manipulation through open DNS resolvers.
The blue arrows represent DNS queries and the red arrows
represent DNS responses.

If not, the recursive resolver will issue a fresh query to the
domain’s authoritative name server, which has been set to
itself, resulting in a SERVFAIL error that can prevent PDNS
logging. However, as long as the attacker controls the target
domain’s initial authoritative name server (a reasonable threat
model), the attacker can configure a long TTL for the initial
authoritative record, resulting in long-term caching.

Experiment Implementation. Here we discuss the details
of the Umbrella and 114DNS manipulation experiment de-
scribed in Section 6.2.3. In Jan. 2021, we conducted an
Internet-wide scan for open DNS resolvers on port 53, finding
1.7M distinct IP addresses with an open DNS resolver. Using
two servers (located in Beijing, China and Fremont, US), we
issued DNS requests to the 114DNS and Umbrella recursive
resolvers as well as the open DNS resolvers, following our
PDNS manipulation workflow. (Note, we never test the full
set of open DNS resolvers to limit the total traffic load to the
PDNS recursive resolvers.) We used two of our own domains
as targets (which host webservers indicating that they are
test servers), where we controlled the domains’ authoritative
name servers.

Both 114DNS and Umbrella load-balance traffic to its re-
cursive resolvers through anycast. By tracing DNS queries
from our servers to the PDNS recursive resolvers, we observe
that even from the same source IP address, DNS lookups can
be routed to different recursive resolver servers (due to any-
casting). To cache our target domain’s authoritative records
at many 114DNS and Umbrella recursive resolver servers,
we first repeatedly issue 1K DNS lookups for each target do-
main from both of our servers (where different lookups may
be routed to different recursive resolver servers, resulting in
that resolver caching our target domain’s authoritative record).
Then when performing PDNS manipulation, we issue 5 re-
peat DNS queries for our target domain to each open DNS
resolver, to overcome intermittent packet loss.
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Figure 11: Average rankings of the attacker’s target domain, depending on different top list construction parameters (weighted
versus unweighted; using Approval, Bordafull, Borda100, or Borda10) and attack strengths (different numbers of attacker IP
addresses and weight boosting DNS requests). Curves labeled as “W-" represent weighted top lists, and the number of weight
boosting requests are listed in parentheses (with “Max” representing the attacker obtaining the maximum normalized weight).

E DNS Caching Considerations

Here, we investigate our PDNS data to understand if we
can reliably factor in DNS caching behavior. A DNS record
is cached for a certain amount of time, the TTL. The au-
thoritative name server sets a TTL for a DNS record (the
ATTL), but the TTL that a client receives from a recursive
resolver’s response (the RTTL) depends on how long the
record has been cached at the resolver, and thus changes over
time and with each DNS response. We note that previous
studies [13, 19, 38, 47] have observed that recursive resolvers
across the Internet often do not respect the ATTL (i.e., recur-
sive resolvers select their own maximum/minimum RTTL val-
ues irrespective of the ATTL). Thus, for many DNS datasets
(including our own), caching behavior is dependent on the
RTTL rather than the ATTL, and thus we focus on RTTL
considerations here.

Ultimately, we find that due to the following three issues, it
is infeasible for us to reliably predict DNS caching behavior
from the PDNS vantage point. Thus, in our work, we do not
attempt to adjust for DNS caching.

E.1 CNAME Caching Discrepancies

Prior work [45] reported that 44% of the Alexa top 1M and
28% of the Umbrella top 1M use CNAME records, and we
observe similar CNAME usage in our PDNS dataset (for
nearly 33% of DNS lookups). We investigate how differ-
ent OSes handle DNS caching based on the TTLs observed
when resolving a chain of CNAME records (including both
CNAME and A records). We find that Windows 10 caches
based on the minimum TTL observed in the CNAME reso-
lution chain whereas Unix-based systems (including Ubuntu
and Mac OS X) use only the first CNAME record’s TTL. As
a consequence, clients on different OSes will cache CNAME
records for different durations. Our PDNS data does not pro-
vide visibility into client OSes, preventing reliable caching
predictions for a substantial fraction of DNS lookups.

E.2 Client-Specific Caching Policies
Beyond CNAME-related caching differences across OSes, dif-
ferent client software also exhibit varying caching behaviors.
Many browsers (e.g., Opera, Chrome, Firefox) implement
their own DNS caches rather than rely on OS-level caches
(particularly to defend against DNS rebinding attacks [29]).
For example, Chrome13 and Firefox14 cache each domain for
60 seconds, irrespective of DNS record RTTLs. As we cannot
determine the specific software clients used from our PDNS
data, we again lack visibility into caching dynamics.

E.3 Unclear DNS Cache Boundaries
Beyond local device caching, DNS caching also occurs at
the local network resolvers. However, given an IP address,
it is unclear where DNS caches may be located. Multiple
IP addresses may rely on the same DNS cache, meanwhile,
multiple clients behind the same IP address (due to network
address translation) may use different DNS caches. We eval-
uated whether DNS caching might be occurring at the IP
address granularity. If so, we would expect that if a PDNS
recursive resolver sent a DNS response for a domain to an IP
address with a given RTTL, that IP address would not gener-
ate subsequent DNS lookups to the recursive resolver for that
domain until the RTTL period passes. We observe that for a
randomly-sampled one-hour window of our PDNS data, this
behavior was seen for only 5% of IP addresses, indicating that
caching boundaries are not typically at the IP-level granularity,
which is the granularity of data provided by PDNS.

F Manipulation Resistance of Approval,
Bordafull, Borda100, Borda10

Figure 11 depicts the average attack success for different top
lists and attack parameters.

13https://bugs.chromium.org/p/chromium/issues/detail?id=164026
14http://kb.mozillazine.org/Network.dnsCacheExpiration

642    31st USENIX Security Symposium USENIX Association

https://bugs.chromium.org/p/chromium/issues/detail?id=164026
http://kb.mozillazine.org/Network.dnsCacheExpiration

	Introduction
	Domain Top Lists
	Opaque Existing Top Lists
	Issues with Existing Top Lists
	Alexa
	Umbrella


	Overview
	Top List Properties
	Building a Top List from Scratch

	Data Source
	Our PDNS Dataset
	Considerations for using PDNS

	Voting-Based Domain Ranking
	IP-Specific Domain Preferences
	IP Address Weighting
	Voting across IP Addresses

	Evaluation
	Ranking Implementation and Runtime
	Borda Truncated Voting Threshold

	List Property: Manipulation Resistance
	Design Decision: Using IP Weighting
	Design Decision: Choice of Voting Method
	Comparison to Existing Top Lists

	List Property: Stability
	Top List Characteristics

	Conclusion
	Undisclosed Alexa Changes
	Manipulating Alexa through Certify
	Alexa's Bias Towards Certified Domains
	PDNS Manipulation using  Open DNS Resolvers
	DNS Caching Considerations
	CNAME Caching Discrepancies
	Client-Specific Caching Policies
	Unclear DNS Cache Boundaries

	Manipulation Resistance of Approval,  Bordafull, Borda100, Borda10

