
Ghost Domain Reloaded: Vulnerable Links in
Domain Name Delegation and Revocation

Xiang Li∗Φ , Baojun Liu∗Φ , Xuesong Bai†, Mingming Zhang∗, Qifan Zhang†

Zhou Li†, Haixin Duan∗‡§�, and Qi Li∗§�
∗Tsinghua University, †University of California, Irvine

‡QI-ANXIN Technology Research Institute, §Zhongguancun Laboratory
{x-l19, zmm18}@mails.tsinghua.edu.cn, {lbj, duanhx, qli01}@tsinghua.edu.cn

{xuesong.bai, qifan.zhang, zhou.li}@uci.edu

Abstract—In this paper, we propose PHOENIX DOMAIN, a
general and novel attack that allows adversaries to maintain
the revoked malicious domain continuously resolvable at scale,
which enables an old, mitigated attack, Ghost Domain. PHOENIX
DOMAIN has two variations and affects all mainstream DNS
software and public DNS resolvers overall because it does
not violate any DNS specifications and best security practices.
The attack is made possible through systematically “reverse
engineer” the cache operations of 8 DNS implementations, and
new attack surfaces are revealed in the domain name delegation
processes. We select 41 well-known public DNS resolvers and
prove that all surveyed DNS services are vulnerable to PHOENIX
DOMAIN, including Google Public DNS and Cloudflare DNS.
Extensive measurement studies are performed with 210k stable
and distributed DNS recursive resolvers, and results show that
even after one month from domain name revocation and cache
expiration, more than 25% of recursive resolvers can still resolve
it. The proposed attack provides an opportunity for adversaries to
evade the security practices of malicious domain take-down. We
have reported discovered vulnerabilities to all affected vendors
and suggested 6 types of mitigation approaches to them. Until
now, 7 DNS software providers and 15 resolver vendors, includ-
ing BIND, Unbound, Google, and Cloudflare, have confirmed
the vulnerabilities, and some of them are implementing and
publishing mitigation patches according to our suggestions. In
addition, 9 CVE numbers have been assigned. The study calls
for standardization to address the issue of how to revoke domain
names securely and maintain cache consistency.

I. INTRODUCTION

Domain names are often registered and abused by ad-
versaries to conduct worldwide criminal activities, such as
botnets [13], [56], phishing [103], [104], and spam or malware
distribution [12], [127]. In practice, ICANN develops the Do-
main Abuse Activity Reporting system (DAAR) and publishes
monthly reports of domain name threats. In April 2022, the
system captured more than 633k newly-registered domains as
malicious in just one month [64].

Nowadays, domain name revocation [111] is considered to

Φ
Both are first authors. � Corresponding authors.

be one of the best security practices and widely adopted to fight
against malicious domain names employed by cyber-crime
activities [38], [79]. Security operators can revoke a malicious
domain name through forcibly deleting or changing delegation
information from its parent zone with the help of registries or
registrars [62]. After revocation, resolving the revoked domain
(and its subdomains) should be either rejected, or redirected
to nameservers owned by security operators.

Ensuring the effective domain name revocation is of great
significance to the health of the DNS ecosystem, which miti-
gates various criminal activities. However, completely achiev-
ing this goal is not easy. This is because current DNS proto-
cols [94], [95] do not require resolvers to actively fetch the
up-to-date delegation information from the upper-level zones.
Thus, domain name revocation has to take effect passively after
the original cache expires in resolvers. Due to the complexity
of the DNS cache mechanism, security risks may be introduced
to prevent the effectiveness of domain name revocation.

Research gap. From an adversary’s perspective, it is valuable
to continually perform and control criminal activities (e.g.,
botnets, phishing, etc.), even after the malicious domain name
has been revoked. In 2012, Jiang et al. [67] revealed a vulner-
ability in the DNS cache update policy and proposed an attack
named Ghost Domain. It allows a malicious domain to be
continuously resolvable at the global scale, even for one week
after the domain was revoked. After disclosure of the ghost
domain attack, all mainstream DNS software was patched at
once [19], [39], [112], [138]. Ten years later, it is commonly
believed that the ghost domain attack has been eliminated,
and the desired outcome of domain name revocation should
be guaranteed. However, we suspect that, as previous research
primarily only focused on security threats of cache updating,
the security community still lacks systematic analysis of all
DNS cache operations, including cache searching and cache
insertion. This research gap results in the entire attack surface
of domain name revocation remaining unclear now.

Our study. To fill this research gap, in this paper, we select 8
mainstream DNS software and conduct a systematic “reverse
engineer” study to understand their internal caching mecha-
nisms. Through source code review and comprehensive black-
box testing, surprisingly, we find that loopholes of domain
name revocation are not closed after ten years and uncover
general and novel attack surfaces that are hindering the secu-
rity guarantees of domain name revocation. Similar to Ghost

Network and Distributed Systems Security (NDSS) Symposium 2023
27 February - 3 March 2023, San Diego, CA, USA
ISBN 1-891562-83-5
https://dx.doi.org/10.14722/ndss.2023.23005
www.ndss-symposium.org

https://netsec.ccert.edu.cn/people/lx19
https://netsec.ccert.edu.cn/people/lbj20
https://faculty.sites.uci.edu/zhouli/research/
https://netsec.ccert.edu.cn/people/zmm18
https://faculty.sites.uci.edu/zhouli/research/
https://faculty.sites.uci.edu/zhouli/
https://netsec.ccert.edu.cn/people/duanhx/
https://netsec.ccert.edu.cn/people/qli/
https://www.tsinghua.edu.cn/en/
https://uci.edu/
https://research.qianxin.com/
mailto:x-l19@mails.tsinghua.edu.cn
mailto:zmm18@mails.tsinghua.edu.cn
mailto:lbj@tsinghua.edu.cn
mailto:duanhx@tsinghua.edu.cn
mailto:qli01@tsinghua.edu.cn
mailto:xuesong.bai@uci.edu
mailto:qifan.zhang@uci.edu
mailto:zhou.li@uci.edu
https://dx.doi.org/10.14722/ndss.2023.23005
https://www.ndss-symposium.org

Domain, our proposed attack, PHOENIX DOMAIN, also allows
adversaries to maintain a revoked domain staying resolvable
over a very long time, overcoming current patches.

Currently, DNS RFCs do not explicitly state that domain
name revocation should be satisfied as one of the basic domain
properties, i.e., consistency that the delegation data from parent
zones and child zones should be consistent (RFC 1034 [94]).
Domain name revocation works by changing delegation data
from parent zones, which should conform with the consistency
property. In practice, DNS cache operations are all imple-
mented from the perspectives of performance and efficiency.
Our research demonstrates that a suit of cache properties can
be exploited by adversaries to prevent resolvers from fetching
the up-to-date delegation information (Section III).

Specifically, PHOENIX DOMAIN has two variations, named
T1 and T2 (Section IV-B). T1 results from vulnerable DNS
implementations while T2 stems from the generic DNS pro-
tocol specifications [94], [95]. (1) When managing cache,
resolvers rely on the TTL-aging mechanism (time to live) to re-
move cached records after expiration. T1 exploits inconsistent
time-of-use and time-of-check cache validation to refresh the
delegation data via an attack time window, which is effective
for specific DNS implementations. (2) During the local cache
searching, resolvers prefer to trust the responses from the
child zone than the parent zone and use the closest known
nameserver for outgoing queries, following the de facto DNS
specifications. T2 leverages this property to insert new child
delegation data into the resolver under the cache miss state
and use iterative subdomains to prolong the cache lifetime,
thus applicable to all DNS implementations. Theoretically,
attackers can keep (sub)domains in the cache for a 127× TTL
time with T2 and potentially indefinitely with T1. Since new
delegation data is renewed with the former cached data missed
or removed, we call the exploited domain Phoenix Domain.

Key findings. PHOENIX DOMAIN breaks current mitigation
patches against the original ghost domain attack. Our experi-
ments show that all mainstream DNS software and 41 popular
public DNS resolvers we surveyed are vulnerable to T1 and/or
T2, in particular, BIND [21], Unbound [139], Google Public
DNS [55], and Cloudflare DNS [30] (Section V-A and VI-C).

In addition, we performed extensive measurements to eval-
uate the real-world impact (Section VI) with practical attack
considerations (Section V-B). First, we collected representative
and stable open resolvers through a 2-month-long ongoing
resolver scanning and carefully select 210k recursive resolvers
as our experiment targets with the consideration of ethics.
Second, we created several domain names for comparison and
performed both short-term and long-term experiments. Third,
we also analyzed and tested different experiment settings that
affected PHOENIX DOMAIN to show the attack effect and
cost. Through experiments, we demonstrate that more than
89% of 210k recursive resolvers are vulnerable, and a large
exploitation is practical. Results also show that more than 40%
resolvers can successfully resolve the revoked domain name
after one week for T2, while more than 25% one month later.

Disclosure and mitigation. We responsibly report the discov-
ered vulnerabilities to all affected vendors. We also suggest 6
short-term and long-term approaches to mitigating PHOENIX
DOMAIN attacks (Section VII). So far, 7 DNS software and 15

DNS
client

Recursive
resolver

Authoritative servers

Root

TLD

SLD

DNS namespace

com net

example.com

Delegating

Delegating

Query example.com

Referral to SLD NS

Query example.com

Referral to TLD NS

1

2

3

4

5

Query example.com

Authoritative answer

6

7

8

“ . ”

Query

Answer

Fig. 1. DNS resolution process and DNS namespace.

public resolver vendors have confirmed the vulnerabilities and
are implementing mitigations according to our report. 9 CVE-
ids have been assigned1. In the end, our study brings attention
to re-examining the domain name delegation and revocation
mechanism and calls for standardization and agreements to
address PHOENIX DOMAIN and revoke domain names securely
and maintain cache consistency.

Contributions. We make the following contributions:

Systematic analysis of implementations. We summarize
potential DNS cache operation weaknesses through source
code review and black-box experiments by analyzing 8 DNS
software.

Novel attack. We propose PHOENIX DOMAIN to make a
revoked domain name sticky to resolvers applicable to all DNS
implementations via exploiting new attack surfaces introduced
by T1 and/or T2.

Measurements to evaluate attacks. We conduct a month-
long measurement to demonstrate the attack effect of 210k
open recursive resolvers and test 41 public resolvers.

Disclosure and mitigation. We report vulnerabilities to
all affected vendors and discuss 6 mitigation approaches to
addressing PHOENIX DOMAIN attacks with them.

II. BACKGROUND

In this section, we overview the DNS resolution process
and domain name delegation [94], [95]. Then, we explain DNS
cache update policies. Finally, we describe domain name revo-
cation process and Ghost Domain that breaks its guarantees.

A. DNS Overview

DNS namespace and resolution. DNS partitions the domain
namespace into a hierarchical structure, with the higher and
lower levels called parent and child. As shown in Figure 1
right, at the top of the hierarchy is the DNS root zone. Below
the DNS root zone is a series of Top-Level Domains (TLDs),
such as .com, .net, and .org. Under TLDs, Second-
Level Domains (SLDs) are managed by registrars, such as
GoDaddy [53] and Verisign [144], and open to registration.
As an example, the TLD and SLD of www.example.com
are .com and example.com.

Most DNS queries generated from clients are processed
by recursive resolvers first. To resolve a DNS request, the

1 PHOENIX DOMAIN: https://phoenixdomain.net/.

2

https://phoenixdomain.net/

;; FLAGS: QR;

;; QUESTION SECTION:
example.com. A

;; ANSWER SECTION:
(Empty)

;; AUTHORITY SECTION:
example.com. 86400 NS ns.example.com.

;; ADDITIONAL SECTION:
ns.example.com. 86400 A e.x.a.m

(a) Referral.

;; FLAGS: QR AA;

;; QUESTION SECTION:
example.com. A

;; ANSWER SECTION:
example.com. 86400 A e.x.a.m

;; AUTHORITY SECTION:
(Empty)

;; ADDITIONAL SECTION:
(Empty)

(b) Answer.

Fig. 2. DNS referral and authoritative answer responses of example.com.

resolver will contact the DNS root server, TLD, and SLD
nameserver subsequently, as shown in Figure 1 left (step
➋, ➍, and ➏). In this process, nameservers that are not
authoritative for the requested domain respond with the re-
ferral information they have. For example, for the query
about www.example.com, the .com nameserver returns
the referral information (example.com nameserver) to the
resolver (step ➌). Resolvers and clients are excepted to cache
the received response data, including referrals and answers, to
speed up subsequent queries about the same domain names.

DNS data structure. A DNS message (both request and
response) contains four sections, namely “question”, “answer”,
“authority”, and “additional”. Figure 2 shows two types of
responses (signaled by QR in “FLAGS”) when querying
example.com. When the answer response comes from the
authoritative nameserver (indicated by AA in “FLAGS”), the
answer section is used to deliver the resource records stored in
the DNS zone file of the requested domain (see Figure 2(b)).
Otherwise (no AA in “FLAGS”), authority and additional
sections are employed to give referral information (shown in
Figure 2(a)).

A resource record embedded in a section is a 5-tuple:
<Domain Name, Time to Live, Class, Type, Value>. Domain
Name serves as a primary key in the DNS resolution. Type
describes the kind of record, such as A for IPv4 addresses
and NS for authoritative nameservers. Time to Live (TTL)
determines the duration of a record to be cached. In Figure 2,
the resource records of example.com should be cached for
86,400 seconds.

Domain name delegation. It occurs when a registrant obtains
a domain name from a registry or registrar, or updates the zone
files [63]. Since the domain namespace can be represented as
a tree, each delegation is a tree branch, and the delegation
data provide referrals for nameservers that are authoritative
for the child zone. The delegation information can be either
NS records (pointing to the child zone nameserver) or glue
records (specifying the nameserver IP addresses). In a DNS
response, typically, the authority section carries NS records,
while the additional section carries glue records, as shown in
Figure 2(a).

To make the recursive resolution possible, the parent zone
must include delegation information for its child zones. For
instance, the .com zone contain referrals pointing to name-
servers that have authority for the example.com zone (step
➎ in Figure 1).

com

botnet.com

Target
resolver

2 3
4

5

botnet.com. NS ns.botnet.com.

botnet.com.

botnet.com. 86400 NS ns1.botnet.com.
botnet.com. 86400 NS ns.botnet.com.
ns.botnet.com. 86400 A a.t.k.r
ns.botnet.com. 43200 A a.t.k.r

Cache

1

Attacker

botnet.com A?

(a) Before botnet.com is revoked, the
attacker makes the victim resolver cache
delegation data of botnet.com.

com

botnet.com

Target
resolver

2

3

botnet.com. NS ns1.botnet.com.

botnet.com.

botnet.com. 86400 NS ns1.botnet.com.
ns1.botnet.com. 86400 A a.t.k.r

ns.botnet.com. 43200 A a.t.k.r

Cache

1

Attacker

ns1.botnet.com A?

(b) After botnet.com is revoked, the
attacker makes the victim resolver cache
new delegation data of botnet.com.

Fig. 3. An example of the ghost domain attack. The gray text in box shows
the records that become invalid.

;; FLAGS: QR;

;; QUESTION SECTION:
ns.botnet.com. A

;; ANSWER SECTION:
(Empty)

;; AUTHORITY SECTION:
botnet.com. 86400 NS ns.botnet.com.

;; ADDITIONAL SECTION:
ns.botnet.com. 86400 A a.t.k.r

(a) Normal referral response.

;; FLAGS: QR AA;

;; QUESTION SECTION:
ns1.botnet.com. A

;; ANSWER SECTION:
ns1.botnet.com. 86400 A a.t.k.r

;; AUTHORITY SECTION:
botnet.com. 86400 NS ns1.botnet.com.

;; ADDITIONAL SECTION:
ns1.botnet.com. 86400 A a.t.k.r

(b) Attack answer response.

Fig. 4. DNS responses used by the ghost domain attack.

B. DNS Cache Update Policy

DNS caching decreases the query latency and reduces the
traffic volume of authoritative nameservers [32], [49], [68],
[97]. Any resolver or client can store the DNS responses and
reuse them in the future until cache expiration. However, the
situation becomes complicated when considering whether to
overwrite resource records that are already in the cache, due
to that the DNS data about a domain can come from different
servers and sections. DNS RFCs define trust levels for DNS
data [47], and the data with higher or equal ranking will be
preferred to overwrite the existing one. The trust levels are
generally defined under the two basic principles.

• P1: DNS answers from the authoritative server have a
higher trust level than the non-authoritative answers.

• P2: Records from the answer section have a higher
ranking than records from authority or additional
sections within the same DNS response.

Despite the high-level policies, DNS RFCs did not offer
concrete guidance for cache operations, leaving DNS software
to implement them. Table I provides a detailed analysis of
DNS software. As a highlight, we found inconsistency exists in
preferring delegation records from child zones (child-centric)
or parent zones (parent-centric). Noticeably, none of child-
centric and parent-centric conflicts with P1. For child-centric,
the delegation data received from the child zone is preferred
according to P1. Whereas for parent-centric, resolvers ask
parent zones for delegation data and ignore child zones (see
Section V-A). Thus, P1 does not apply since no data needs to
be overwritten.

C. Domain Name Revocation and Ghost Domain Attack

Domain name revocation is the reverse process from do-
main name delegation, which cancels or changes the domain

3

ownership. When a registered domain expires without renewal,
the registration will be canceled. If a domain name violates the
policies defined by ICANN [61], [63], such as being used by
botnet [13], domain sinkholing and delisting could be carried
out [11], [62]. For domain sinkholing, the IP addresses or
nameservers of the revoked domain will be changed to point
to servers of the legal authorities. Domain delisting removes
the domain from the domain namespace and responds with
nonexistence (NXDomain) whenever there is a query about
the domain.

For either of the above operations, the executors need
to modify the delegation data in the parent zones from the
revoked domain. Two guarantees are supposed to be achieved
under revocation.

• G1: The revoked domain should not be resolved to
its original destination by the resolvers after the TTL
specified in the resource records expires.

• G2: The subdomains of the revoked domain should
not be resolvable.

Ghost domain. In 2012, Jiang et al. [67] showed that an at-
tacker could break the guarantees with the ghost domain attack,
and many mainstream DNS software were affected, including
BIND and PowerDNS. Specifically, the attacker can keep a
domain resolvable at resolvers even after revocation. The attack
takes multiple steps, and we follow the example shown in
Figure 3 and Figure 4. First, the attacker actively asks a target
resolver to resolve the malicious domain botnet.com to
keep the original delegation data being cached (Figure 3(a)
and Figure 4(a)). Second, after revocation (botnet.com and
ns.botnet.com are removed from .com zone), the attacker
changes the NS records of the malicious domain to new records
(ns1.botnet.com) at his/her authoritative nameservers. At
last, before the TTL of the cached delegation data expires in the
resolver, the attacker queries a subdomain of botnet.com
that can be processed by his/her authoritative nameservers
(Figure 3(b)). As a result, the delegation information about
botnet.com is refreshed by the attacker illegally, including
a new TTL (86,400 seconds), which breaks guarantee G1
(botnet.com is still resolvable) and G2 (the nameservers
of botnet.com are cached, which can be queried to resolve
botnet.com’s subdomains).

Mitigation. Ghost domain exploits the vagueness of the cache
update policy. P1 specifies that the answers from the authori-
tative nameservers are more trustworthy, but it should not be
the case when the associated domains are revoked. Under the
ghost domain, the cached delegation data (NS records) can
be overwritten by the responses from the nameservers of the
revoked domain (policy P1). After its disclosure, mainstream
DNS software have corrected their DNS cache policies [19],
[39], [112], [138]. Currently, resolvers still allow authoritative
nameservers to update their delegation information, except the
TTL value of the authoritative data [121], [137], thus invaliding
the ghost domain attack. Following the above example, the
TTL of botnet.com’s NS records will not be restored to
86,400 when the resolver receives the response in Figure 2(b).

III. SYSTEMATIC ANALYSIS OF DNS CACHE

Though the majority of DNS software has been patched
against the ghost domain attack (shown in Table I), we suspect

Cache miss

Insert the
response into

the cache

Request from clients Response from servers

Search data from the cache

Cache hit Cache miss

Return the
answer

Use the
closest NS for

queries

Search data from the cache

Cache hit

Update the
records in the

cache

Cache

Cache is stored passively
according to the TTL Cache expiration Delete records

from the cache

Check data
ranks

Exploited by
Ghost Domain

Exploited by
Phoenix Domain T1

Exploited by
Phoenix Domain T2

Fig. 5. DNS cache operations by recursive resolvers.

that the threat is not fully mitigated due to the complexity of
DNS cache and the inconsistency among different software. In
this section, we systematically “reverse engineer” the cache
mechanisms of the mainstream DNS software through code
review and software testing to analyze the internal DNS cache
operations and uncover new attack surfaces.

A. Generic Workflow of DNS Cache

To gain deeper understanding of the workflow of DNS
cache, we analyzed the latest version of 8 popular DNS
software that support the recursive resolver mode, including
BIND9 [21], Knot Resolver [74], Unbound [139], PowerDNS
Recursor [114], Microsoft DNS [93], Simple DNS Plus [128],
Technitium [135], and MaraDNS (Deadwood) [87], as shown
in Table VII. The above DNS software are also selected by
previous works that discovered prominent DNS vulnerabili-
ties [4], [66], [67], [71], [77], [81], [84], [85], [147]. Each
software has tens or hundreds of thousands of SLOC (Source
Lines of Code), and it took about two weeks to analyze them
all together, as summarized in Appendix A.

By reviewing the source code of DNS software (except Mi-
crosoft DNS and Simple DNS Plus), we found that DNS cache
operations are tightly integrated into the resolution process,
and they are passively triggered along with a DNS request or
response. Figure 5 shows the generic workflow. Upon receiving
a DNS request, the resolver extracts the primary search key
(<Domain Name, Class, Type>) and searches the local cache
database. If the search key has a hit, the resolver returns the
answer directly to the client. Otherwise, the resolver searches
for an authoritative nameserver and contacts it.

Upon receiving a DNS response from nameservers, the
resolver examines whether the received resource records exist
in the local cache. If not, the records will be inserted into the
cache database. Otherwise, the resolver applies the trustwor-
thiness rules (described in Section II-B) to determine whether
to overwrite the cache.

Independent from DNS requests and responses, the deletion
of DNS cache entries is performed passively and triggered
when the record TTLs expire.

4

B. Attack Surface

Though the ghost domain attack can evade domain revoca-
tion, we found it only considers updating a cache entry, leaving
out the other cache operations, i.e., cache insertion and cache
searching. Below we analyze these two cache operations and
show their potential weaknesses. In Section IV-B, we show
concrete exploitation.

DNS cache insertion. After receiving a DNS response from
the nameserver, resolvers are excepted to cache the resource
records that are embedded in answers and referrals. As pre-
sented in Figure 5, the execution flows differ based on cache
hit and cache miss. We found though stricter policies have been
applied in cache update following cache hit due to the disclo-
sure of Ghost Domain (e.g., no extension of TTL, described in
“Mitigation” of Section II-C), there is no restriction on cache
insertion after cache miss, leading to new attack surfaces.

Specifically, because cache deletion is triggered by TTL
expiration and the process is detached from DNS resolution,
there exists a time window for the attacker to launch a time-
of-check and time-of-use (TOCTOU) attack. The attacker can
query a subdomain (assuming the subdomain has not been
cached) to let the resolver contact his/her nameserver, delay
the response till the original delegation data is removed, and
reply with new delegation data. This time, cache insertion is
triggered following cache miss (due to the removal of old
delegation data), and the security policies deployed around
cache update are all bypassed.

DNS cache searching. After receiving a DNS request, the
resolver examines whether the queried record is cached. When
cache miss happens, the resolver needs to contact an author-
itative nameserver. It turns out DNS software perform fuzzy
matching to locate the closest known delegation information
and choose the authoritative nameserver from it, following
DNS RFC (Section 5.3.3 in RFC 1034 [94]). This is because
the delegation records from the child zones are considered
more trustworthy than records from the parent zone [47], [131],
following policy P1 described in Section II-B.

As an example, we provide the pseudo-code of BIND9
cache searching in Algorithm 1 (in Appendix B). When there
is a cache miss, fuzzy matching is done through the Longest
Suffix Match (LSM) algorithm (Line 12 of Algorithm 1). LSM
algorithm starts by searching nameservers of the queried do-
main name, then the parent domain name, the grandparent, and
so on toward the root. As regards to the example of Figure 1,
if the referral response in Figure 2(a) has been cached, the
resolver directly contacts nameservers of ns.example.com.

Though fuzzy matching reduces unnecessary queries to
upper-level zones, it prevents resolvers from getting timely and
up-to-date delegation information from parent zones. Hence,
the attacker can exploit the child zone to provide answers
different from the parent zones and evade revocation.

IV. ATTACK OVERVIEW

In this section, we describe our attack PHOENIX DOMAIN
that exploits the attack surfaces from cache insertion and
searching, and breaks the guarantees of domain name revo-
cation. PHOENIX DOMAIN does not violate any DNS RFCs
and affects mainstream DNS software and popular public DNS

com

botnet.com

Target
resolver

2

3

botnet.com. NS ns1.botnet.com.

botnet.com.

botnet.com. 86400 NS ns1.botnet.com.
ns1.botnet.com. 86400 A a.t.k.r

ns.botnet.com. 0 A a.t.k.r

Cache

1

Attacker

ns1.botnet.com A?

(a) After botnet.com is revoked, the
attacker makes the victim resolver cache
new delegation data of botnet.com when
ns.botnet.com is about to expire (T1).

com

botnet.com

Target
resolver

2

3

s.botnet.com. NS ns.s.botnet.com.

botnet.com.

s.botnet.com. 86400 NS ns.s.botnet.com.
ns.s.botnet.com. 86400 A a.t.k.r
botnet.com. 43200 NS ns.botnet.com.
ns.botnet.com. 43200 A a.t.k.r

Cache

1

Attacker

s.botnet.com A?

(b) After botnet.com is revoked, the
attacker manipulates the victim resolver to
cache delegation data of s.botnet.com
before ns.botnet.com expires (T2).

Fig. 6. Examples of the PHOENIX DOMAIN attack. The gray text in box
shows the records that become invalid.

servers. First, we describe the threat model of our attack. Then,
we dive into details of the two exploitation, T1 and T2, and
compare them with the original ghost domain attack.

A. Threat Model

Like the ghost domain attack, we consider an adversary
who aims to keep the malicious domain alive after revocation
by “poisoning” the cache of recursive resolvers. We assume the
attacker controls the authoritative nameservers of the revoked
domain, and the control persists after revocation (e.g., attackers
can set up their nameservers with bullet-proof hosting, which is
resilient against legal actions [11], [62]). The attacker is able to
query the target resolvers with arbitrary DNS requests. When
the target resolvers are open, e.g., Google Public DNS [55],
this condition is automatically satisfied, and Section VI shows
that numerous open resolvers can be attacked. When the target
resolvers are private, the attackers need to join their networks
or hijack a victim client in the same network (e.g., by tricking
the client into visiting a malicious web page and executing
DNS queries). We also assume that the attacker knows when
the domain is about to be revoked (e.g., getting notified from
the registrars), so the attack can be performed right away.
Though domain revocation assumes a “passive defender” who
waits for the cached records of the malicious domain on the
resolvers to expire, our attack is also resilient against an “active
defender” who tries to query the target resolvers to force cache
updates, because the resolvers have to inquire the attackers’
nameservers subsequently.

B. Attack Workflow

Here we use the same example of the ghost domain attack
(Section II-C) to demonstrate the workflow of T1 and T2.
For both variations, in the first stage, the attacker requests the
target resolver to resolve botnet.com (Figure 3(a)), and the
nameservers of .com return delegation data of botnet.com
to the resolver, and the resolver accepts and caches the data
for a TTL time, 86,400 seconds. Then, botnet.com is
revoked from the .com zone, while the target resolver still
caches its NS records, ns.botnet.com. In the second stage,
before cache expiration, the attacker can conduct T1 and T2
respectively to keep delegation records of botnet.com or
its subdomains continuously alive. Starting from here, we use
Figure 6 to show the exploitation process.

5

Cache expiration
and NS records
are removed

ns1.botnet.com A?

ns1.botnet.com A?

Attacker
botnet.com

Target
resolver

botnet.com. NS 86400 ns.botnet.com.
ns.botnet.com. A 86400 a.t.k.r

Cache

1

2

botnet.com. NS 86400 ns1.botnet.com.
ns1.botnet.com. A 86400 a.t.k.r

ns.botnet.com. A 0 a.t.k.r

Cache

TTL

Delay
for ∆𝒕𝒕𝒅

∆𝒕𝒕𝒅

ns1.botnet.com A
botnet.com NS

3

Cache inserting

Fig. 7. PHOENIX DOMAIN T1 attack steps.

;; FLAGS: QR AA;

;; QUESTION SECTION:
ns1.botnet.com. A

;; ANSWER SECTION:
ns1.botnet.com. 86400 A a.t.k.r

;; AUTHORITY SECTION:
botnet.com. 86400 NS ns1.botnet.com.

;; ADDITIONAL SECTION:
ns1.botnet.com. 86400 A a.t.k.r

(a) Answer for T1.

;; FLAGS: QR;

;; QUESTION SECTION:
ns1.botnet.com. A

;; ANSWER SECTION:
(Empty)

;; AUTHORITY SECTION:
botnet.com. 86400 NS ns1.botnet.com.

;; ADDITIONAL SECTION:
ns1.botnet.com. 86400 A a.t.k.r

(b) Referral for T1.

;; FLAGS: QR AA;

;; QUESTION SECTION:
s.botnet.com. A

;; ANSWER SECTION:
s.botnet.com. 86400 A a.t.k.r

;; AUTHORITY SECTION:
s.botnet.com. 86400 NS s.botnet.com.

;; ADDITIONAL SECTION:
s.botnet.com. 86400 A a.t.k.r

(c) Answer for T2.

;; FLAGS: QR;

;; QUESTION SECTION:
s.botnet.com. A

;; ANSWER SECTION:
(Empty)

;; AUTHORITY SECTION:
s.botnet.com. 86400 NS s.botnet.com.

;; ADDITIONAL SECTION:
s.botnet.com. 86400 A a.t.k.r

(d) Referral for T2.

Fig. 8. DNS payloads utilized for T1 and T2 on botnet.com.

T1 attack. As illustrated in Figure 6(a), the attacker manipu-
lates the target resolver to accept and cache the new delegation
data of botnet.com when the old cached data is about to
expire. We exploit a delicate attack time window to achieve
the T1 attack, as shown in Figure 7.

After 86, 400 − ∆ttd (the time to the TTL expiration)
seconds from the initial caching of botnet.com, the del-
egation data is about to expire within ∆ttd seconds. At this
moment, because the cached data is still valid, attackers can
make the resolver query a subdomain that has not been en-
countered (e.g., ns1.botnet.com) towards the nameserver
of botnet.com (steps ➊ to ➋). On the nameserver, after
receiving the query, the attacker delays the response for ∆ttd

seconds (step ➌). Therefore, when the resolver receives new
delegation records carried by either the answer or referral
response2 in Figure 8(a) or Figure 8(b), due to passive cache
management and inconsistent cache use-and-check operations
shown in Section III-A, old delegation data has expired and
been removed from the cache (although just been used), and
new data will be stored for a refreshing TTL of 86,400 seconds
without violating current cache update policy. In the following
exploiting round, attackers can conduct the same delay-and-
respond operation again and again when the cached delegation

2 The delegation data in both the answer and referral response are cachable.
But for the referral, the recursive needs to query again for a final answer.

data is about to expire, which makes botnet.com and all
subdomains resolvable for a long time (potentially indefinitely).

In the end, T1 bypasses all patches related to the ghost
domain attack and breaks guarantee G1 and G2 in Section II-C.
A concrete problem the attacker needs to address is how to
delay the response without aborting the resolution process, as
the longer the delay, the more likely T1 will succeed. We
discuss how to extend the time window in Section V-B.

T2 attack. Before NS records of botnet.com expire, the
attacker can request the target resolver to query a subdomain
of botnet.com (s.botnet.com) that has not been en-
countered. Because of cache miss, the resolver searches for
the closest NS record in cache and contact the nameserver.
As shown in Figure 6(b), after 43,200 seconds, the cached
NS record of botnet.com is still valid with a remaining
lifetime of 43,200 seconds. On the authoritative server, the
attacker can create a new downward delegation and return
new delegation data of s.botnet.com to the resolver. The
delegation payload can also be carried by answer or referral
responses2 in Figure 8(c) and Figure 8(d). Then, the target
resolver accepts and caches the delegation response for a
new TTL of 86,400 seconds. Attackers can use subdomains
of s.botnet.com for communication. After another 43,200
seconds, the delegation data of botnet.com expires, but the
data of s.botnet.com is still alive.

As mentioned in Section III-B, due to the use of fuzzy
matching in cache searching, queries for subdomains un-
der s.botnet.com are still sent to the nameservers of
s.botnet.com by the resolver. Therefore, the attacker can
delegate another subdomain under s.botnet.com, such as
s.s.botnet.com, and repeat this process by adding new
prefix labels. Given that the number of the labels (or the
recursive levels) of a domain name is up to 127, theoretically,
the attacker is able to keep subdomains in the resolver’s cache
for a time of 127× TTL with the above strategy. In Section V,
we show the common maximum TTL value is 7 days, so the
cache lifetime can be more than 2 years.

In the end, T2 enables the resolution of subdomains of a
revoked domain, which breaks guarantee G2 in Section II-C.

Remarks. In this section, we describe the technical details
of two exploitation, T1 and T2. A classical usage scenario
of T1 and T2 attacks is botnet C&C communication. Under
T1, the attacker can keep botnet.com as the contact point
(e.g., C&C domain) to the cyber-crime victims for a very long
time. Under T2, attackers can also leverage a fixed domain
name (the longest domain name with the most labels), e.g.,
a subdomain of botnet.com with 122 “s” prefix labels, as
the contact point from the exploitation beginning.

In addition, T1 and T2 can apply to the phishing attack.
In the previous study, Du et al. described an emerging new
type of domain-name fraud, named level-squatting [45]. Unlike
existing frauds that use similar second-level domain names to
impersonate users, adversaries embed brand names in the sub-
domain section to deceive users, especially mobile users. Since
some mobile browsers fail to display level-squatting domains,
Internet users may be vulnerable to this fraud. For example,
attackers could use paypal.com.botnet.com under T1
while adopting paypal.com.s.· · ·.s.botnet.com with
114 “s” labels in the middle for T2.

6

TABLE I. THE RESOLUTION MECHANISM IMPLEMENTATION DIFFERENCES OF MAINSTREAM DNS SOFTWARE FOR RECURSIVES.

Software Version
Answer Referral Delegation Max Max Query

DNSSEC
Vulnerable?

data1 data1 update policy TTL timeout count GO T1A T1R T2A T2R

BIND9 [21] 9.18.6 ✓ ✓ Child-centric 7 days 10s 13 ✓ ✗ ✓2 ✓ ✓2 ✓

Knot Resolver [74] 5.5.2 ✓ ✓ Child-centric 6 days 1.2s 3 ✓ ✓3 ✓ ✓ ✓ ✓

Unbound [139] 1.16.1 ✓ ✓ Child-centric 1 day >10s 9 ✓ ✗ ✓ ✓ ✓ ✓

PowerDNS Recursor [114] 4.7.2 ✓ ✓ Child-centric 1 day 1.5s 1 ✓ ✗ ✗ ✗ ✓ ✓

Microsoft DNS [93] 2022 ✓ ✓ Parent-centric 1 day 3s 1 ✓ ✗ ✗ ✗ ✓ ✓4

Simple DNS Plus [128] 9.1.108 ✓ ✓ Parent-centric 7 days 1.5s 3 ✓ ✗ ✗ ✗ ✓ ✓4

Technitium [135] 8.0.2 ✗ ✓ Parent-centric 7 days 10s 6 ✓ ✗ ✗ ✓5 ✗ ✓

MaraDNS [87] 3.5.0021 ✗ ✓ Parent-centric 1 day 6s 6 ✗ ✗ ✗ ✗ ✗ ✓4

1 Whether caching delegation data of the authoritative section (NS records) and additional (glue records) section from answer or referral responses.
2 Not vulnerable if the DNSSEC option is turned on by default.
3 Vulnerable if the remaining TTL value is less than 5s or 1% of original TTL.
4 Vulnerable if delegating to a new IP address.
5 Vulnerable if delegating to a new NS name different from the queried domain name.
✓: Yes. ✗: No. ✓: Vulnerable. ✗: Not vulnerable.

Discussion. In general, T2 can also work under a domain
generation algorithm (DGA). We compare the T2 DGA with
traditional DGA here. To avoid the disruption from domain
revocation, the traditional DGA would require the attacker
to register many domains from registrars or free dynamic
DNS (DDNS) services (e.g., No-IP [101]). For the first case,
recently, some registrars and authorities put stricter policies on
bulk domain registration with APIs [29], [90]. For the second,
that a domain is registered under DDNS services has been
considered as a detection feature [91], [110].

T2 overcomes the above limitations by just using a revoked
domain and does not require registering new domains. The
major issue with T2 is that when the attack runs for long,
the malicious subdomain will have many labels, distinguishing
itself from the normal domains. This is due to the T2 domain
should be changed after each attacking round (e.g., from
botnet.com to s.botnet.com to s.s.botnet.com).
Therefore, a DGA needs to be run on the victim side to update
the contact point. We will discuss this issue in Section VII-A.

C. Comparison to Ghost Domain Attack

Similar to Ghost Domain, PHOENIX DOMAIN aims to
keep malicious domains alive in the target resolvers after
domain name revocation. However, PHOENIX DOMAIN differs
from the ghost domain attack by uncovering a broader attack
surface related to DNS cache operations and exposing security
threats to domain name revocation mechanisms even after the
patches against the ghost domain attack have been widely
adopted.

In particular, the ghost domain attack exploits the vulnera-
bilities in cache update implementations to prolong the lifetime
of cached delegation records. As a result, these vulnerabilities
are specific to DNS software that adopts a problematic child-
centric delegation update policy without restricting the TTL
value refreshing. In contrast, T1 exploits the vulnerability of
inconsistent cache use-and-check operations when inserting
data in cache expiration and affects specific DNS implementa-
tions, as shown in Table I. However, T2 exploits de facto cache
searching operations to insert data in cache miss, stemming

from generic DNS protocol standards and applicable to all
DNS implementations.

V. FEASIBILITY ANALYSIS OF PHOENIX DOMAIN

To demonstrate the feasibility of PHOENIX DOMAIN at-
tacks, we provide the evaluation results of the 8 analyzed
DNS software in this section. We also describe the practical
considerations in launching PHOENIX DOMAIN under real-
world constraints.

A. Vulnerable DNS Software

As described in Section IV, we surveyed 8 mainstream
DNS implementations. Through source code review and black-
box experiments, we analyze and test their caching behaviors,
including the cache update policy and maximum TTL value in
default, which are illustrated in Table I. Based on these results,
we are allowed to validate whether they are vulnerable to
PHOENIX DOMAIN and the original ghost domain attack. For
convenience, we abbreviate the original ghost domain attack
as GO. Besides, in Figure 8, we showed that the attacker’s
answers could be embedded in different responses. Therefore,
we further name the T1 with the answer response (referral
response) as T1A (T1R), same to T2 as T2A (T2R).

Vulnerable implementations. First, we inspect the cache ac-
cepting behaviors, i.e., which section from what DNS response
is cachable. As shown in the column of “Answer data” and
“Referral data”, all software except Technitium and MaraDNS
will cache the delegation data from both the answer and the
referral response. Thus, Technitium and MaraDNS should be
immune to T1A and T2A when the answer response is utilized
for attack (Figure 8(a) and Figure 8(c)).

Second, when updating cached delegation data, Microsoft
DNS, Simple DNS Plus, Technitium, and MaraDNS prefer
to trust data in the referral response from the parent zone
(parent-centric). Specifically, for Microsoft DNS, the TTL
field of cached NS records can be updated while the name
and IP address of authoritative servers cannot be changed.
This behavior is introduced by the DNS cache locking security
feature [92] that the resolver will not overwrite cached entries

7

for the entire duration of the TTL by default. Simple DNS
Plus overwrites cached glue records but does nothing to cached
NS records encountering new delegation data. Technitium just
ignores unsolicited records in the authority and additional
section and uses cached delegation data from parent zones
as an answer to NS queries. MaraDNS takes a distinct way
to cache delegation data that can only be fetched from the
parent zone (just caching the domain name and nameserver’s
address as a key-value pair [132]). Therefore, they are not
affected by GO, T1A, and T1R, and we summarize them as
adopting parent-centric update policies. The other 4 software
choose delegation data from child zones prior to parent zones
(child-centric) and are vulnerable to T1A and T1R.

In summary, we find all DNS software are vulnerable under
T2. BIND9, Knot Resolver, Unbound, and Technitium are vul-
nerable under T1. A caveat exists for BIND9, which ignores
the delegation data in the authority and additional section from
the answer response when the DNSSEC option is enabled,
thus immune to T1A and T2A. Surprisingly, PowerDNS Re-
cursor adopts consistent cache use-and-check operations and
is not affected by T1 (discussed in Section VII-A). As an
exception, when the cached data expires, Technitium accepts
referral responses from the child zone and is susceptible by
T1R. However, the nameserver’s name should differ from the
queried domain name. Besides, to exploit Microsoft DNS,
Simple DNS Plus, and MaraDNS with T2R, attackers should
delegate nameservers to new IP addresses. We also obverse
that Knot Resolver is still exposed to the risk of GO until now.
When the remaining TTL value of cached data is less than 5s
or 1% of original TTL, the original ghost domain attack can
still work against Knot Resolver.

B. Practical Attack Considerations

In this part, we discuss several practical attack considera-
tions that affect the lifetime of PHOENIX DOMAIN.

Maximum cache TTL. Theoretically, an attacker can keep
the malicious DNS answer in the cache for a very long time
by setting a tremendous TTL value (231−1 seconds, around
68 years). However, previous research has shown that most
recursive resolvers may not strictly comply with the TTL
mechanism [83], [96], [123], and DNS operators might adopt a
maximum TTL limitation [22], [73], [113], [141]. As a result,
resolvers can overwrite the original TTL value when it exceeds
the maximum value allowed. T2 has a total cache lifetime up
to 127× TTL. For example, T2 can live for more than 2 years
(with a 7-day TTL) and more than 4 months (with a 1-day
TTL). We also re-examined the maximum TTL limitation for
mainstream DNS implementations. As shown in Table I, all
popular software have a maximum cache TTL of more than
1 day, and 3 of them have a maximum 7-day TTL by default
(BIND9 [21], Simple DNS Plus [128], and Technitium [135]).

Maximum query timeout (attack time window). The maxi-
mum query timeout is the amount of time that resolvers spend
attempting to resolve a recursive query before a failure. During
the timeout window, resolvers will retry its current resolution
with more than one outgoing queries (listed in the “Query
count” column). The bigger the query timeout window is, the
more success probability T1 will have. With the transmission
mechanism, we can extend the attack time window to the

maximum query timeout of each resolver. As shown in Table I,
all implementations affected by T1 have a maximum query
timeout of more than 10 seconds except for Knot Resolver
(1.2 seconds). Through repetitious tests using BIND9 in our
experimental network, we achieve a success rate of 100% out
of 100 experiments with a ≥ 3 seconds timeout.

Multiple frontend caches. Many large or public DNS re-
solvers often have multiple frontend servers or multi-layer
distributed caches that serve different queries even from the
same client IP address with load-balancing or IP anycast [8],
[52], [72], [118]. Therefore, to cover as many as caches, in
each attack round, attackers can send multiple queries to each
resolver. We will evaluate this method in Section VI.

Cache losses. Although DNS cache should be stored for the
full TTL, resolvers may occasionally lose cached data due to
cache capacity limit and cache flushing. Caches are of limited
size. For example, the default size limit of BIND9 is 90%
of physical memory [22]. When the amount of cached data
reaches the limit, resolvers start evicting non-expired records
based on cache replacement policies [32], e.g., BIND9’s LRU-
based strategy (Least Recently Used). For this case, frequent
probing can help increase the cache hit rate, and previous
works like [123] show that cache evictions due to capacity
limits occur infrequently. Besides, the cache can be flushed
explicitly by the resolver or accidentally due to software or
machine reboot. In practice, this may reduce the cache hit
rate, thus alleviating the impact of PHOENIX DOMAIN.

VI. FINDING VULNERABLE RESOLVERS IN THE WILD

In this section, by performing extensive experiments and
measurements, we evaluate the real-world impact of PHOENIX
DOMAIN with realistic settings. Note that, for T1, we only
examine whether well-known public DNS services are ex-
ploitable without large-scale measurements. This is because
to launch T1, the attack time window is required to be
adjusted delicately for each DNS resolver. However, achieving
time synchronization between all distributed devices remains
a challenge [107]. Then, we provide our considerations of the
potential ethical issues.

A. Collecting DNS Resolvers

Public resolver list. We collect a comprehensive resolver list
of 41 popular public and free recursive vendors through search
engines listed in Table VIII (in Appendix C) that take a top
uses share for world [14], part of which are used in prior
works as well [4], [66], [67], [71], [72], [84], [85], [118],
such as Google Public DNS [55] and Cloudflare DNS [30].
We choose the primary IP address of each resolver for testing.

Open and stable resolver list. To collect open DNS resolvers,
we take a straightforward approach by querying domain names,
whose name servers are controlled by ourselves, toward UDP
port 53 in the IPv4 address space using XMap [80]. We
can observe open resolvers’ ingress and egress IP addresses
from both the client and name server sides. We regard the IP
addresses that return correct DNS answers as potential open
resolvers, of which the detailed statistics are listed in Table II.

We acknowledge that scanning from a single vantage point
can not collect a comprehensive and complete resolver list.

8

TABLE II. STATISTICS OF ANALYZED OPEN RESOLVERS.

Resolver type # IP %

Open resolver 1,202,041 100.0%
Responsive on 02/18/2022 1,499,110 -
Responsive on 03/28/2022 1,202,041 80.2%
With valid PTR records 475,909 39.6%
With same AS for ingress & egress IP 991,155 82.5%

Recursive resolver 210,029 17.5%
Identified by ingress & egress IP 42,156 20.1%
Identified by AS of ingress & egress IP 1,689 0.8%
Identified by PTR records 12,210 5.8%
Identified by AS info & PTR records 153,974 73.3%

However, scanning the IPv4 network for DNS resolvers and
other open services is widely used in security research, such
as [65], [86], [100], [109]. We believe the discovered resolvers
reflect the lower bound for us to evaluate PHOENIX DOMAIN.

During DNS probings by February 18, 2022, we obtained
1,499,110 possible resolvers, while only 1,202,041 (80.2%)
remained alive over a month later (on March 28, 2022). To
evaluate the validity of the remained resolvers, we further
perform the following checks (adopted by [109] as well):
First, we find that only 475,909 (39.6%) of these IP addresses
have valid PTR records. Second, we compare the autonomous
system (AS) information of resolvers’ ingress and egress IP
pairs and find 991,155 (85.2%) pairs belong to the same ASes.

To avoid potential ethical issues, we filter out forwarders
since they tend to be the residential home routers [147] that
do not perform as recursives (same ingress and egress IPs or
AS information) and are neither equipped with PTR records
nor DNS keywords [109]. Overall, we have selected 210,029
IP addresses that behave as recursives, representing 17.5% of
all open resolvers. The following heuristic methods complete
the selection: First, we treat the IPs as recursives if their
ingress and egress IPs are the same. We obtain 42,156 (20.1%)
recursives through this condition. Second, we leverage the
AS information to indicate a candidate recursive, such as the
organization name (e.g., AS 51289 of SkyDNS [129]), and
acquire 1,689 (0.8%) recursives. Third, a feasible way is to
identify keywords (e.g., “resolver” and “dns”) in the PTR
data of IP addresses, and we have selected 12,210 (5.8%)
recursive resolvers. At last, for the left IPs, we combine the
AS information and PTR data (same ASes of ingress and
egress IPs, and valid PTR records) to check whether they
are recursives implicitly. Results show that we can obtain the
most (153,974, 73.3%) recursives. Furthermore, to evaluate the
accuracy of the methods, we apply them to the public resolvers
listed in Table VIII and identify 38 out of 41.

Distribution of recursive resolvers. We analyzed the geog-
raphy and AS information of all recursive resolvers using the
GeoLite2 database [89] and listed the top ten regions and ASNs
in Table III. Results show all recursives’ IP addresses belong to
218 regions, among which the top three are USA, China, and
Russia. Looking at AS information, we find that IP addresses
are under the control of 11,274 ASes. Of note, the distribution
of global recursive resolvers may introduce the bias that a
few regions account for the majority of resolvers. However,
we aim to demonstrate the prevalence of affected resolvers
worldwide rather than showing their geographical distribution
in this study.

TABLE III. REGION AND AS DISTRIBUTION OF RECURSIVE
RESOLVERS USED IN OUR EXPERIMENTS.

Region Number % ASN Number %

USA 43,034 20.5% 4837 9,825 4.7%
China 25,152 12.0% 4134 5,988 2.9%
Russia 22,802 10.9% 3462 5,864 2.8%
Japan 13,421 6.4% 4713 5,134 2.4%
France 12,801 6.1% 8866 4,884 2.3%
Turkey 8,389 4.0% 9121 4,779 2.3%
Brazil 7,128 3.4% 16276 4,355 2.1%

Sweden 7,026 3.3% 209 3,937 1.9%
Taiwan 6,869 3.3% 3215 3,735 1.8%
Ukraine 6,572 3.1% 12389 3,485 1.7%

Total 218 regions Total 11,274 ASes

TABLE IV. SOFTWARE VERSION OF RECURSIVE RESOLVERS USED IN
OUR EXPERIMENTS.

Software # Resolver Software # Resolver

Microsoft DNS 38,484 (18.3%) BIND 37,766 (18.0%)
PowerDNS Recursor 7,958 (3.8%) Unbound 7,348 (3.5%)

Akamai 6,292 (3.0%) Cleanbrowsing 2,194 (1.0%)
Simple DNS Plus 218 (0.1%) Knot Resolver 8

Total identified 126,382 (60.2%) Others 26,114 (12.4%)

Software version of recursive resolvers. For each recursive
resolver, we adopt version.bind DNS queries [20] and an
open-source DNS tool fpdns [42] to fingerprint their software
versions. Overall, due to the resolver configuration and limited
fingerprints, we only identified software versions of 60.2% out
of 210k resolvers. We present the result details in Table IV.

B. Measurement Setups

To discover vulnerable resolvers in the wild, we conduct
several measurements on both 41 public resolvers and 210k
open resolvers. For each measurement, we use all resolvers
to periodically trigger specially crafted DNS requests with
dedicated refreshing intervals and TTLs toward domain names
managed by ourselves. Then we probe and check whether we
can receive valid responses from the client-side, determining
the cache status of each domain name. In more detail, we create
5 groups of domain names (subzones3) under botnet.com4

for comparison.

D1: Legitimate domain. We first conduct one controlled
experiment by querying a live legitimate domain name, e.g.,
google.com, to check whether resolvers are stably alive.

D2: Revoked domain. We set another controlled experi-
ment with a revoked domain name, revoked.botnet.com.
We use it to show the cache status after the domain revocation.

D3: Ghost domain. To check whether the ghost domain is
still exploitable in the real world, we reproduce experiments
in [67]. For each refreshing round, we query a new domain
name in the format of ns<id>.ghost.botnet.com with
a different id plus one before the cache expires.

D4: Phoenix domain T1. This domain is also in the format
of ns<id>.phoenix1.botnet.com, of which the id is
plus one each refreshing round. When the cache is about to

3 The revocation of subdomains works the same as the TLD, so we use
subdomains for measurements instead of several TLDs.

4 We registered a domain by ourselves for testing and use botnet.com
as an example here for anonymity.

9

0 5 10 15 20 25 30
Max query timeout (s)

0
10
20
30
40
50
60
70
80
90

100
Pr

op
or

tio
n

(%
)

Fig. 9. The fraction of max query timeout of analyzed recursive resolvers.

expire (e.g., the remaining cache lifetime is 2s), we query a
new subdomain and reply after a delay of ∆ttd (e.g., 5s).

D5: Phoenix domain T2. We query the subdomain under
phoenix2.botnet.com with a newly added sub-label pre-
fix before cache expiration. For instance, after two refreshing
intervals, we query s.s.s.phoenix2.botnet.com con-
taining 3 “s” labels.

Notice that all domain names mentioned above and their
authoritative servers are controlled by ourselves to set TTLs,
answer data, and reduce the real-world impact. After the first
testing round, we remove NS records of D2-D5 from the
botnet.com zone (conducting domain name revocation).
Besides, for convenience, we leverage the answer responses
in Figure 8(a) and Figure 8(c) as the attack payloads.

C. Discovering Vulnerable Public DNS Resolvers

Before experiments, we test and analyze practical consid-
erations for public resolvers, including the maximum cache
TTL, maximum query timeout, and multiple frontend caches
introduced in Section V-B.

Maximum cache TTL and query timeout. As listed in
Table VIII, for 41 public resolvers, we find that 30 out of
41 support a ≥ 1-day TTL, and 28/41 public resolvers’ query
timeout window is ≥ 3 seconds, which provides enough TTL
lifetime and attack time window to launch T1 and T2. We
also conduct a measurement of 210k resolvers, and results in
Figure 9 show that more than 80% can receive a valid response
after nearly 3 seconds, which is sufficient to launch T1.

Multiple frontend caches. To evaluate the multiple caches’
popularity, through one vantage point, we test and infer the
frontend cache number of 41 public DNS resolvers shown in
the column of “Cache number” in Table VIII. We send 30
queries to each resolver IP every 5 seconds and use the same
source IP address but different UDP ports. Results show that
17 resolvers have more than one frontend cache. We also find
that load-balancing policies of 36 resolvers can be bypassed
via sending DNS queries with the same TCP/UDP five-tuple5.

Vulnerable public resolvers. As tabulated in Table VIII (in
Appendix C), through repetitious experiments, we show that
all 41 resolver vendors are vulnerable to T2 (T2A and/or
T2R) because they implement current downward delegation
mechanism and honor the LSM match algorithm, such as

5 The five-tuple of TCP/UDP connection is the source IP address, source
port, destination IP address, destination port, and transport protocol [75].

TABLE V. DNS RESOLUTION BEHAVIOR DIFFERENCES OF 10 OUT OF
41 POPULAR PUBLIC RESOLVER VENDORS.

Vendor
Vulnerable?

GO T1A T1R T2A T2R

Google Public DNS [55] ✗ ✗ -1 ✗ ✓2

Cloudflare DNS [30] ✗ - - ✓ ✓

114DNS [1] ✗ ✓ ✓ ✓ ✓

OpenDNS [27] ✗ ✓ ✓ ✓ ✓

Level3 DNS [78] ✗ ✓ ✓ ✓ ✓

Quad9 DNS [117] ✗ ✓ ✓ ✓ ✓

Neustar UltraDNS [99] ✗ ✓ ✓ ✓ ✓

Dyn DNS [46] ✗ ✓ ✓ ✓ ✓

CleanBrowsing DNS [28] ✗ ✓ ✓ ✓ ✓

Yandex.DNS [146] ✗ ✓ ✓ ✓ ✓

1 “-” means the issue has not been identified due to a small timeout value.
2 Vulnerable if delegating to a new nameserver IP address.
✓: Vulnerable. ✗: Not vulnerable.

0
(15:00)

20
(16:40)

40
(18:20)

60
(20:00)

80
(21:40)

100
(23:20)

Round (Time on 03/29/2022)

0

50k

100k

150k

200k

N
um

be
r o

f r
ec

ur
si

ve
s c

ac
hi

ng
a

sp
ec

ifi
c

ty
pe

 o
f d

om
ai

n
na

m
e

legitimate domain name
phoenix domain T2 name

ghost domain name
revoked domain name

Fig. 10. Resolving of domain names at recursive resolvers over time with a
TTL of 10m and a probing interval of 5m. The dashed vertical line indicates
the original TTL expiration time of each domain name (test for eight hours).

Google Public DNS [55] and Cloudflare DNS [30]. In the
meanwhile, unsurprisingly, they are all immune to the original
ghost domain attack since it has been proposed for nearly
ten years. 6 resolver vendors are not affected by T1A and
T2A. We extrapolate that they ignore delegation data in the
answer response [24], including DNS for Family [40], Google
Public DNS [55], DNSPod Public DNS+ [136], CIRA Shield
DNS [26], ControlD DNS [35], and UncensoredDNS [142].
For resolvers with a query timeout window of ≥ 3s (intro-
duced in Section V-B), we test whether they are vulnerable
to T1. Results show that resolvers except for CIRA Shield
DNS [26] are all exploitable by T1 (T1A and/or T1R). Since
the implementation of CIRA Shield DNS is not open source,
we speculate that it prefers the delegation data from parent
zones or aligning the cache use-and-check operation. These
mitigation methods will be discussed in Section VII-A. Here,
we show 10 out of 41 public resolver vendors in Table V.

D. Detecting Vulnerable Open DNS Resolvers

Measurements and results. Using experiment setups in Sec-
tion VI-B, we perform large-scale measurements to show the
population of exploitable open DNS resolvers by T2.

10

0 16
Resolver (%)

Fig. 11. Geographic view of vulnerable recursive resolvers haunted by
Phoenix T2 domains after 100 rounds for each region and their percentage
indicated by different colors.

Measuring the effect of the iteration number (short-term).
Ideally, the more iterative refreshing, the longer cache is main-
tained. However, since the maximum domain label number is
limited by DNS implementations (Section IV-B), attackers can
not unlimitedly create a subdomain to perform T2 attacks. We
first conduct 100 rounds of measurements toward all 210k
resolvers to dig into (1) the maximum iterations (i.e., the
maximum label number) supported by open resolvers and
(2) the possibility of different threat models in real-world
networks. For each domain group, we set the TTL to 10
minutes, refresh the DNS cache in a 5-minute interval, and
snoop the cache every 5 minutes.

Results in Figure 10 show that more than 187,134 (89%)
resolvers return valid responses for the phoenix domain names
after the cache has expired, demonstrating all these resolvers
are vulnerable to T2. Even after 100-round tests, over 88,216
(42%) recursive resolvers are still haunted by T2, and we
depict the distribution of their geo-location in Figure 11 to
show the prevalence in each region. There is a plunge (18.3%)
before the 40th test because the maximum label number of
Microsoft DNS is 39 confirmed by experiments. Besides, 9,426
(4%) are exploitable for the ghost domain attack. Notice that
there are 5,610 (3%) recursives that will never remove DNS
cache after a domain is revoked (the red line in Figure 10).

Measuring the longitudinal impact (long-term). Recall that
attackers in our threat models aim at exploiting the revoked
domain name for malicious activities; thus, the lifetime of
PHOENIX DOMAIN is an essential component. To this end,
we attempt to conduct a month-long measurement and analyze
how many open resolvers can maintain the delegation data
continuously. Overall, we set the probing interval to 30 minutes
in this measurement and employ a 1-day TTL value. For T2,
we update the query domain name every 3/4 TTL while setting
the TTL value to 1 hour and the refreshing interval to 30
minutes for the ghost domain.

As shown in Figure 12, we find that around 84,015 (40%)
recursives vulnerable for T2 for at least one week while 53,429
(25%) for one month, which provides enough time window
for malicious domains to be continuously exploitable. The
number of vulnerable resolvers falls near the time of cache
expiration because real-world factors affect the attack results,
as discussed in Section V. Specifically, 40% of resolvers have
a maximum cache TTL value of < 1 day (discussed below),

03/29 04/05 04/12 04/19 04/26
days in March and April 2022

0

50k

100k

150k

200k

N
um

be
r o

f r
ec

ur
si

ve
s c

ac
hi

ng
a

sp
ec

ifi
c

ty
pe

 o
f d

om
ai

n
na

m
e

legitimate domain name
phoenix domain T2 name

ghost domain name
revoked domain name

Fig. 12. Resolving of domain names at recursive resolvers over time with a
TTL of 1d and a probing interval of 30m. The dashed vertical line indicates
the original TTL expiration time of each domain name (test for one month).

and some implementations are immune to the answer payload
(listed in Table I). Besides, about 10k resolvers are not alive
after one month and 3,929 (1.4%) still cache the records of
revoked domain names, which we will discuss in the following.
However, the ghost domain name only last in 2,837 (1.4%)
open resolvers after the cache expiration, meaning nearly all
resolvers are patched.

Factors affecting T2. Apart from multi-round and long-term
measurements, we conduct the following comparative exper-
iments to demonstrate the effects caused by several factors.
Different settings can introduce different attack results of T2.

Cache TTLs and refreshing intervals. In order to evaluate
how TTLs and refreshing intervals influence the possibility of
T2, we first measure 210k resolvers to see the maximum cache
TTL distribution. Results in Figure 14 shows that about 20%
are 1 day and > 40% are up to a week. In total, more than
60% have a > 1-day TTL. Surprisingly, 21,546 resolvers have
a maximum TTL of ≥ 1 year.

Then according to the TTL distribution, we perform mea-
surements on 210k resolvers with TTL values set to 1h, 6h,
1d, and 7d, and refreshing intervals to 1/4 TTL, 1/2 TTL,
and 3/4 TTL. From the results illustrated in Figure 13, we
find if TTL values are larger, there can be less exploitable
resolvers, comparing Figure 13(a) (TTL=1h) and Figure 13(c)
(TTL=1d), because most resolvers have a small maximum TTL
value shown in Figure 14. In addition, using the same TTL
value, we show that the refreshing intervals of the DNS cache
may not have much influence on the number of exploitable
resolvers. We attribute this to the stable recursive resolvers
we used, which cache records following the TTL in a good
manner. However, the later the DNS cache is refreshed, the
longer a T2 domain can survive (the red lines in Figure 13).
Attackers can select a sizeable refreshing interval to reduce
the attack cost and achieve a similar effect.

Probing times. As discussed in Section V, many DNS
resolvers deploy multiple frontend caches6 for reasons like
load balancing, which affects the success rate of cache updates.
Considering the average cache number and ethical issues, we
compare the results of probing 4 times with 1 time per round.

6 The average frontend cache number of 41 resolvers (Table VIII) is 4.

11

03/29 03/29 03/30 03/31 04/01
days in March and April 2022

0

50k

100k

150k

200k

N
um

be
r o

f r
ec

ur
si

ve
s c

ac
hi

ng
a

sp
ec

ifi
c

ty
pe

 o
f d

om
ai

n
na

m
e

interval = 1/4 TTL
interval = 1/2 TTL
interval = 3/4 TTL

(a) TTL = 1h (test for 3 days)

03/29 04/02 04/07 04/11 04/16
days in March and April 2022

0

50k

100k

150k

200k
interval = 1/4 TTL
interval = 1/2 TTL
interval = 3/4 TTL

(b) TTL = 6h (test for 18 days)

03/29 04/05 04/12 04/19 04/26
days in March and April 2022

0

50k

100k

150k

200k
interval = 1/4 TTL
interval = 1/2 TTL
interval = 3/4 TTL

(c) TTL = 1d (test for 1 month)

03/29 04/05 04/12 04/19 04/26
days in March and April 2022

0

50k

100k

150k

200k
interval = 1/4 TTL
interval = 1/2 TTL
interval = 3/4 TTL

(d) TTL = 7d (test for 1 month)

Fig. 13. Resolvers with alive phoenix domain T2 names under different TTL values and refreshing intervals setups.

0 100000 200000 300000 400000 500000 600000
Max cache TTL (s)

0
10
20
30
40
50
60
70
80
90

100

Pe
rc

en
ta

ge
 (%

)

7 days

1 days

6 hours

1 hour

Fig. 14. The fraction of max supported TTL of analyzed recursive resolvers.

Overall, we get extra 3.4% exploitable resolvers of 210k by
probing 4 times. In actual exploitation, attackers can send
multiple queries once to increase the success rate.

Other methods to maintain cache. (1) Stale data. Stale data
is proposed by RFC 8767 [76] for recursives to serve expired
data to provide answers when nameservers cannot be reached.
The maximum stale cache lifetime is suggested to be 1 to
3 days. However, as shown in Figure 12 (the red line), we
find, after one month, 3,929 resolvers can still successfully
resolve the revoked domain name, which do not follow the
specifications and can be exploited to inject revoked domains.
(2) Large cache TTL. Resolvers tend to overwrite the TTL
field to prevent caching records for a long time (up to 68
years). However, as discussed in Section V, 21,546 resolvers
have a maximum TTL value of more than one year, and 552
of them still have cached records that we queried one month
ago. Administrators should examine their resolvers for these
careless misconfigurations or implementations.

E. Ethical Considerations

Our experiments involve many DNS providers, implemen-
tations, and open DNS resolvers. Therefore, we incorporate
many considerations regarding ethics in the experiment design.
We strictly adhere to the existing ethical principles of Menlo
Report [70] and best practices of network measurements [108].

First, we conduct controlled experiments. We install DNS
software on our machines in the vulnerability validation phase,
using the open-sourced mainstream DNS implementations. All
domain names and authoritative nameservers are operated by
ourselves. Since the domain names are newly created on-
demand that no users will access, thus the DNS records we set

for them will not influence real-world users. In addition, the
testing domain names are mainly “revoked” ones in our threat
model; thus, the DNS records cached by open resolvers will
be automatically removed after the TTL time. Specifically, for
resolvers not purging cached data, we only use them for the
D1 and D2 experiments and do not insert new records.

Second, for active measurements (e.g., testing public re-
solvers and probing open resolvers), we strictly limit the
scanning rate to reduce the effect on the operation of DNS
resolvers [84]. Besides, we restrict the number of DNS queries
(up to 4) toward each resolver in each testing round.

Third, we report vulnerabilities to all relevant vendors for
responsible disclosure, which we discuss in Section VII-B.

VII. DISCUSSION AND MITIGATION

A. Mitigation

To defend against PHOENIX DOMAIN attacks, delegation
consistency should be guaranteed. Even though DNSSEC has
been proposed to validate the delegation trust chain between
parent and child zones [15], [16], [17], it does not require a
registered domain must be signed and thus can not mitigate
PHOENIX DOMAIN. We discuss 6 mitigation approaches ac-
cording to their effectiveness as listed in Table VI, part of
which have been adopted by vendors shown in Section VII-B.

M1: Re-validating delegation information. The root cause
of PHOENIX DOMAIN is that the current DNS cache mech-
anism lacks active cache validating operations. Once records
in the upper-level zone are altered or revoked, it takes the
TTL time for resolvers to perceive the change. Therefore,
we urge resolvers to implement the active cache validating
operations like the validation of certificate revocation in the
PKI ecosystem [36], [122], especially for the crucial delegation
data. For example, resolvers can validate the state of expired
NS records by requesting the TLD zone, which will eradicate
PHOENIX DOMAIN.

This mitigation method has been proposed since 2010 [59],
[145], even prior to the original ghost domain attack in
2012, but has not been adopted by implementations until
now. Through inspecting the original M1 document [145] and
discussion email lists [126], we found that the community did
not come to a common conclusion to re-validate the NS record
and apply parent-centric policies [24]. At last, Ghost Domain
was mitigated by not allowing TTL extension instead of M1
(Section II-C). Since then, M1 was ignored just as an expired

12

TABLE VI. EFFECTIVENESS SUMMARY OF 6 MITIGATION METHODS.

Mitigation T1 T2

M1: Re-validating delegation information

M2: Updating delegation data by parent-centric policies. #

M3: Aligning the cache use-and-check operations #

M4: Ignoring unsolicited DNS records G# G#

M5: Scrutinizing domain names with over many labels # G#

M6: Restricting the maximum cache TTL # G#

 : Fully valid. G#: Partially valid. #: Not valid.

draft until 2020, when Huque et al. felt that M1 was still useful
and attempted to propel its standardization [59], [125]. Both
they and developers of Unbound [140] did not think M1 would
impose more overhead on implementations.

M2: Updating delegation data by parent-centric policies.
As described in Section III, Ghost Domain and T1 result from
the selfward delegation on authoritative servers of child zones,
which return different delegation data on behalf of parent
zones. This is a common type of cache inconsistency [106],
[131], although DNS specifications require the consistent del-
egation data between the parent and child zone [94]. To elim-
inate this inconsistency, resolvers can prioritize the delegation
data from the parent zone with a high trust level or only trust
delegation information from the upper-level zone. However, it
violates current best practices because most implementations
tent to trust data from child zones (child-centric) [24]. This
measure can defend both Ghost Domain and T1, and has been
adopted by implements like Technitium and MaraDNS (see
Table I).

M3: Aligning the cache use-and-check operations. In the
case of the T1 attack, the resolver uses cache when it is alive
(time-of-use) while deleting cache when it is expired (time-of-
check) without considering the synchronized state that expired
data has been used in the current resolution process. Therefore,
the inconsistent cache operation between time-of-use and time-
of-check during one resolution process results in T1. Resolvers
should associate the cache use-and-check operations and not
remove cached records if the current resolution process uses
them. For example, on each query, PowerDNS Recursor deletes
expired records when searching for referral data from the cache
and does not remove expired data when updating the cache,
which alleviates the T1 attack.

M4: Ignoring unsolicited DNS records. As shown in Fig-
ure 8, attackers leverage the answer response to carry new
delegation records in the authority and additional section.
Those potential records are not solicited by the queriers and do
not pertain to queries. Under the circumstance of child-centric
delegation update policies, those unsolicited delegation data
can overwrite cached data and facilitate the following queries.
However, we believe that resolvers could ignore unsolicited
DNS records to mitigate T1A and T2A, and this operation does
not affect performance basically. By modifying the source code
of BIND9 and resolving Alexa top 100k domains [9], we test
the number of outgoing queries issued by BIND9 with the
authority and additional section cached (Ec) and not (Enc).
Results show that Ec sends out 250,019 queries while Enc

costs 250,269 queries with only a 0.1% increasing.

M5: Scrutinizing domain names with over many labels.
When exploiting the T2 attack, attackers delegate a new child
zone to prolong the total lifetime of cached data. After each
downward delegation, T2 will be added a label in the front.
Therefore, a domain name with too many labels is a distinct
characteristic. With the cooperation of a large famous company
operating Passive DNS data7, we find > 99% of domain names
(total 7,703,247 under Alexa top 1M domains [9]) observed in
the DNS response log over the past one year have ≤ 10 labels.
We recommend resolvers check the delegation data of domain
names with > 10 labels carefully, such as applying M1 or M6.

M6: Restricting the maximum cache TTL. Since T2 lever-
ages 127× TTL to prolong the total lifetime of cached records,
operators can configure a small maximum cache TTL value for
their resolvers as a short-term mitigation method. For example,
with a 1-hour TTL, the total cache lifetime is no more than
127 hours. In addition, vendors can strengthen the caching
mechanism by lowering the cache TTL value of subdomains,
such as the TTL of delegation data for the child zone should
be less than those from its parent zone.

B. Disclosure and Responses

We have reported vulnerabilities to all relevant vendors for
responsible disclosure, including 8 software vendors, 41 public
resolver vendors, and other affected vendors, e.g., Akamai
DNS services [6] and SDNS [124]. So far, 7 software and
15 public resolver vendors have confirmed the vulnerabilities,
and part of them have published the details after negotiation
with each other. We are assigned 9 CVE numbers and are still
waiting for responses from other vendors. There are months
for them to fix those issues before the paper gets published.
Below we summarize the discussions and vendors’ mitigation
plans after they reviewed our report.

BIND: decided that PHOENIX DOMAIN was the DNS protocol
problem and opened issues to discuss mitigation M2 for the
development version [24].

Knot: acknowledged the 2 novel attacks and is waiting for the
mitigation M1 draft to be a standard to implement.

Unbound: confirmed the novel PHOENIX DOMAIN attacks and
has released a public fix following mitigation M1 and M3, and
assigned 2 CVE numbers for 2 vulnerabilities separately [140].

PowerDNS: acknowledged that PHOENIX DOMAIN was a new
vulnerability and is considering implementing mitigations.

Microsoft: determined PHOENIX DOMAIN was a generic issue
applicable to the DNS protocol and was not specific to it.

Technitium: confirmed the 2 vulnerabilities and patched the
update with mitigation M1 and M4 [134] after discussion.

MaraDNS: described PHOENIX DOMAIN was a very clever
attack and patched MaraDNS with mitigation M5 and M6 [88].

Google Public DNS: confirmed the vulnerability in the Bug
Hunters platform [54] and awarded us a $500 bounty and is
implementing patches.

7 The Passive DNS data contains captured DNS response log from the
public recursive resolver to clients with their approval. Employees in QI-
ANXIN Technology Company [115] conducted the label analysis experiment,
and no private information was disclosed.

13

Cloudflare DNS: determined PHOENIX DOMAIN to be a case
of DNS poisoning in the HackerOne platform [57] and made
security restrictions against it after our report.

AdGuard DNS: replied that PHOENIX DOMAIN seemed to be
a “by design” behavior and is discussing mitigation with us.

Akamai DNS Service: affirmed that they are vulnerable to T2
but not T1, as they implement a separate cache for the record
and delegation data. Now they are discussing with us to apply
the same separate delegation cache for mitigating T2.

114 DNS and AliDNS: confirmed 2 new vulnerabilities. 114
DNS is implementing mitigation M3 and M6 as the mitigation
approaches, while AliDNS is considering mitigation M2.

CNNIC sDNS, DNS For Family, OneDNS, Quad9 DNS,
and SDNS: confirmed 2 vulnerabilities and are implementing
patches.

360 Secure DNS, Baidu DNS, DNSPod Public DNS, and
Dyn DNS: acknowledged the vulnerabilities and are further
evaluating the mitigation approaches. Besides, Baidu DNS and
DNSPod Public DNS awarded us a bounty respectively.

VIII. RELATED WORK

DNS delegation inconsistency. The significant research effort
was dedicated to analyzing issues and root causes of DNS
delegation inconsistency. Although RFC 1034 [94] states that
the delegation data from parent zones and child zones should
be consistent, delegation inconsistencies are prevalent and
persistent in practice. Since 2004, Pappas et al. [106] has
shown the lame delegation affected 15% of the DNS zones,
which parent zones pointed to wrong nameservers for child
zones. In 2020, Sommese et al. [131] delved into TLD and
SLD zones and discovered 8% of SLDs (i.e., .com, .net,
and .org) exhibit delegation inconsistencies. They proved that
the asynchronous delegation would lead to different resolution
results among different resolvers. In addition, Akiwate et
al. [7] demonstrated that DNS misconfigurations could lead to
the unauthorized delegation and lame delegation in some zone
files affecting 14% of domains they queried. Recently, in 2022,
Houser et al. [58] found that more than 1,000 domains were
vulnerable to hijacking due to defective delegations. Unlike
previous research, our work proposed novel PHOENIX DO-
MAIN attacks, which exploits delegation priorities for referrals
from parent and child zones.

DNS Misconfiguration. In 2010, Kalafut et al. [69] firstly
investigated the orphan DNS server, which had address records
in the DNS zone, but the domain it resided in did not exist.
Then found that 1.7% of examined DNS servers were orphans,
and 1% were used for phishing and malware behaviors. In
2020, Sommese et al. [130] re-quantified the orphan record.
They found that for .com and .net TLDs, the number of
orphan records had fallen to zero, while for some TLDs, e.g.,
.info and .mobi, the number had increased over 10 years.
Orphan records result from the zone file misconfiguration
maintaining forgotten records in the top-level zone file. In
contrast, ten years later, PHOENIX DOMAIN attacks can still
manipulate the delegation records continuously resolvable in
the cache against the current defense of ghost domain attacks.

DNS Cache Measurement. To analyze the cache mechanism
and performance, numerous studies have contributed to DNS

cache measurements. In 2013, Schomp et al. [123] observed
that the TTL value was frequently modified by 64% of re-
solvers they analyzed, but cache evictions due to capacity lim-
its occurred infrequently. In 2017, Klein et al. [72] proposed
techniques for cache enumeration and analyzed the complex
multiple frontend caches. They utilized a diverse dataset to
evaluate their tool from the view of DNS resolution platforms.
In 2018, Al-Dalky et al. [8] presented a characterization and
classification of the multiple recursive resolver pools and
showed that pools are dispersed geographically. Moura et
al. [96] assessed DNS resilience during DDoS attacks and
demonstrated DNS caching, retries, and multiple recursives
contributed to the attack tolerance. In 2019, Foremski et
al. [49] analyzed the effect of TTL changes on DNS traffic
and found caching a name for a shorter duration led to
more queries. Moura et al. [97] showed that longer TTLs
had significant promise in reducing latency and provided
recommendations for configuring TTLs. In 2020, Randall et
al. [118] leveraged their tool Trufflehunter to infer the caching
strategies of four popular public DNS resolvers and estimate
domain name usage. In 2022, Niaki et al. [100] utilized the
TTL value to infer when the resolver cached the records
and to localize website filtering appliances. Compared with
those works, we also measure the caching and transmission
mechanism of DNS software and open resolvers and exploit
them to achieve the PHOENIX DOMAIN attacks.

IX. CONCLUSION

Though DNS practices have almost mitigated the threats
caused by ghost domain names, the current DNS standards
are still flawed for exploiting revoked domains. In this study,
we systematically investigate the models of domain name del-
egation and revocation and mainstream DNS implementations.
We propose a general and novel attack, named PHOENIX
DOMAIN with two variations, which leverages inconsistent
cache use-and-check validation (T1 vulnerable to specific
implementations) and de facto cache insertion operation (T2
applicable to all implementations) to make a revoked domain
name continuously resolvable. All DNS implementations can
be affected by T1 and/or T2. To evaluate the real-world
implications, we perform large-scale measurements toward 41
public DNS resolvers and 210k open recursives. Results show
that all public resolvers and most open recursives can be ex-
ploited to launch PHOENIX DOMAIN attacks. For responsible
disclosure, we propose 6 feasible suggestions to help the DNS
community mitigate the threats. So far, 7 software and 15
resolver vendors have confirmed or fixed the vulnerabilities.
9 CVE-ids have been assigned. We calls for standardization
to address the issue of insecure domain name revocation and
inconsistent cache.

ACKNOWLEDGEMENT

We thank our shepherd, Doowon Kim, and all the anony-
mous reviewers for their valuable comments to improve this
paper and all software and resolver vendors and our indus-
try partners for their discussion and support. The authors
from Tsinghua University were supported by the National
Natural Science Foundation of China (U1836213, U19B2034,
62102218, and 62132011). The authors from University of
California, Irvine were supported by NSF CNS-2047476 and
gifts from Cisco and Microsoft.

14

REFERENCES

[1] 114DNS, “114DNS,” https://www.114dns.com/, 2022.
[2] 360, “360 Secure DNS,” https://sdns.360.net/, 2022.
[3] AdGuard DNS, “AdGuard DNS,” https://adguard-dns.io/, 2022.
[4] Y. Afek, A. Bremler-Barr, and L. Shafir, “NXNSAttack: Recursive

DNS Inefficiencies and Vulnerabilities,” in Proceedings of the 29th
USENIX Security Symposium (USENIX Security ’20), 2020.

[5] AhaDNS, “AhaDNS.com,” https://ahadns.com/, 2022.
[6] Akamai, “DNS Infrastructure,” https://www.akamai.com/products/dns-

infrastructure, 2022.
[7] G. Akiwate, M. Jonker, R. Sommese, I. Foster, G. M. Voelker,

S. Savage, and K. Claffy, “Unresolved Issues: Prevalence, Persistence,
and Perils of Lame Delegations,” in Proceedings of the ACM Internet
Measurement Conference (IMC ’20), 2020.

[8] R. Al-Dalky and K. Schomp, “Characterization of Collaborative Res-
olution in Recursive DNS Resolvers,” in Proceedings of the 19th
International Conference on Passive and Active Measurement (PAM
’18), 2018.

[9] Alexa, “The top 1M sites on the web,” https://www.alexa.com/, 2022.
[10] AliDNS, “AliDNS,” https://alidns.com/, 2022.
[11] E. Alowaisheq, P. Wang, S. Alrwais, X. Liao, X. Wang, T. Alowaisheq,

X. Mi, S. Tang, and B. Liu, “Cracking the Wall of Confinement:
Understanding and Analyzing Malicious Domain Take-downs,” in
Proceedings of the 26th Annual Network and Distributed System
Security Symposium (NDSS ’19), 2019.

[12] O. Alrawi, C. Lever, K. Valakuzhy, R. Court, K. Snow, F. Monrose,
and M. Antonakakis, “The Circle Of Life: A Large-Scale Study of The
IoT Malware Lifecycle,” in Proceedings of the 30th USENIX Security
Symposium (USENIX Security ’21), 2021.

[13] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis,
D. Kumar, C. Lever, Z. Ma, J. Mason, D. Menscher, C. Seaman,
N. Sullivan, K. Thomas, and Y. Zhou, “Understanding the Mirai
Botnet,” in Proceedings of the 26th USENIX Security Symposium
(USENIX Security ’17), 2017.

[14] APNIC, “DNS Resolvers Use,” https://stats.labs.apnic.net/rvrs, 2022.
[15] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose, “RFC

4033: DNS Security Introduction and Requirements,” RFC Proposed
Standard, 2005.

[16] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose, “RFC
4034: Resource Records for the DNS Security Extensions,” RFC
Proposed Standard, 2005.

[17] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose, “RFC
4035: Protocol Modifications for the DNS Security Extensions,” RFC
Proposed Standard, 2005.

[18] Baidu, “Baidu DNS,” https://dudns.baidu.com/, 2022.
[19] BIND, “CVE-2012-1033: Ghost Domain Names: Revoked Yet Still

Resolvable,” https://kb.isc.org/docs/aa-00691, 2012.
[20] BIND, “How do I change the version that BIND reports when queried

for version.bind?” https://kb.isc.org/docs/aa-00359, 2021.
[21] BIND, “BIND 9,” https://www.isc.org/bind/, 2022.
[22] BIND, “BIND 9 Configuration Reference,” https://bind9.readthedocs.

io/en/latest/reference.html, 2022.
[23] BIND, “BIND Source Code Repository,” https://gitlab.isc.org/isc-proj

ects/bind9/-/blob/v9 18 2/lib/dns/rbtdb.c#L4880, 2022.
[24] BIND, “Consider parent-centric delegations,” https://gitlab.isc.org/isc-

projects/bind9/-/issues/3311, 2022.
[25] CenturyLink, “CenturyLink DNS,” https://www.centurylink.com/home

/help/internet/dns.html, 2022.
[26] CIRA, “CIRA Shield DNS,” https://www.cira.ca/cybersecurity-servic

es/canadian-shield, 2022.
[27] Cisco, “OpenDNS,” https://www.opendns.com/, 2022.
[28] CleanBrowsing, “CB DNS,” https://cleanbrowsing.org/, 2022.
[29] Cloudflare, “Unable to update DDNS using API for some

TLDs,” https://community.cloudflare.com/t/unable-to-update-ddns-us
ing-api-for-some-tlds/167228, 2020.

[30] CloudFlare, “CloudFlare DNS,” https://1.1.1.1/dns/, 2022.

[31] CNNIC sDNS, “CNNIC sDNS,” https://www.sdns.cn/, 2022.

[32] E. Cohen and H. Kaplan, “Proactive Caching of DNS Records: Ad-
dressing A Performance Bottleneck,” in Proceedings 2001 Symposium
on Applications and the Internet (SAINT ’01), 2001.

[33] Comodo, “DNS,” https://www.comodo.com/secure-dns/, 2022.

[34] Comss.one, “DNS,” https://www.comss.ru/page.php?id=7315, 2022.

[35] ControlD, “ControlD DNS,” https://controld.com/free-dns/, 2022.

[36] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and
W. Polk, “RFC 5280: Internet X.509 Public Key Infrastructure Cer-
tificate and Certificate Revocation List (CRL) Profile,” RFC Proposed
Standard, 2008.

[37] CZ.NIC, “CZ.NIC ODVR DNS,” https://www.nic.cz/odvr/, 2022.

[38] Department of Justice Office of Public Affairs, “United States Leads
Seizure...” The United States Department of Justice, 2022.

[39] DJB dnscache, “CVE-2012-1191,” https://nvd.nist.gov/vuln/detail/C
VE-2012-1191, 2012.

[40] DNS for Family, “DNS for Family,” https://dnsforfamily.com/, 2022.

[41] DNS Forge, “DNS Forge - DNS Resolver,” https://dnsforge.de/, 2022.

[42] DNS-OARC, “Fpdns,” https://www.dns-oarc.net/tools/fpdns, 2021.

[43] DNSlify DNS, “DNSlify DNS,” https://www.dnslify.com/, 2022.

[44] DNS.WATCH, “DNS.WATCH,” https://dns.watch/, 2022.

[45] K. Du, H. Yang, Z. Li, H. Duan, S. Hao, B. Liu, Y. Ye, M. Liu,
X. Su, G. Liu, Z. Geng, Z. Zhang, and J. Liang, “TL;DR Hazard:
A Comprehensive Study of Levelsquatting Scams,” in Proceedings
of the 15th International Conference on Security and Privacy in
Communication Systems (SecureComm ’19), 2019.

[46] Dyn, “Dyn DNS,” https://help.dyn.com/internet-guide-setup/, 2022.

[47] R. Elz and R. Bush, “RFC 2181: Clarifications to the DNS Specifica-
tion,” RFC Proposed Standard, 1997.

[48] FDN, “FDN DNS,” https://www.fdn.fr/actions/dns/, 2022.

[49] P. Foremski, O. Gasser, and G. C. M. Moura, “DNS Observatory: The
Big Picture of the DNS,” in Proceedings of the Internet Measurement
Conference (IMC ’19), 2019.

[50] Free DNS, “FreeDNS,” https://freedns.zone/, 2022.

[51] Freenom, “DNS,” http://www.freenom.world/en/index.html, 2022.

[52] Z. Gao and A. Venkataramani, “Measuring Update Performance and
Consistency Anomalies in Managed DNS Services,” in Proceedings
of 2019 IEEE Conference on Computer Communications (INFOCOM
’19), 2019.

[53] GoDaddy, “GoDaddy,” https://www.verisign.com/, 2022.

[54] Google, “Bug Hunting,” https://bughunters.google.com/, 2022.

[55] Google, “Google Public DNS,” https://dns.google/, 2022.

[56] H. Griffioen and C. Doerr, “Examining Mirai’s Battle over the Internet
of Things,” in Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’20), 2020.

[57] HackerOne, “HackerOne,” https://www.hackerone.com/, 2022.

[58] R. Houser, S. Hao, C. Cotton, and H. Wang, “A Comprehensive,
Longitudinal Study of Government DNS Deployment at Global Scale,”
in Proceedings of the 2022 IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN ’22), 2022.

[59] S. Huque, P. Vixie, and R. Dolmans, “Draft: Delegation Revalidation
by DNS Resolvers,” RFC Draft, 2022.

[60] Hurricane Electric, “HE DNS,” https://dns.he.net/, 2022.

[61] ICANN, “Uniform Domain Name Dispute Resolution Policy,” https:
//www.icann.org/resources/pages/policy-2012-02-25-en, 1999.

[62] ICANN, “Guidance for Preparing Domain Name Orders, Seizures
& Takedowns,” https://www.icann.org/en/system/files/files/guidance-
domain-seizures-07mar12-en.pdf, 2012.

[63] ICANN, “2013 Registrar Accreditation Agreement,” https://www.ican
n.org/resources/pages/approved-with-specs-2013-09-17-en, 2013.

[64] ICANN, “Domain Abuse Activity Reporting (DAAR) System,”
https://www.icann.org/en/system/files/files/daar-monthly-report-
30apr22-en.pdf, 2022.

15

https://www.114dns.com/
https://sdns.360.net/
https://adguard-dns.io/
https://ahadns.com/
https://www.akamai.com/products/dns-infrastructure
https://www.akamai.com/products/dns-infrastructure
https://www.alexa.com/
https://alidns.com/
https://stats.labs.apnic.net/rvrs
https://dudns.baidu.com/
https://kb.isc.org/docs/aa-00691
https://kb.isc.org/docs/aa-00359
https://www.isc.org/bind/
https://bind9.readthedocs.io/en/latest/reference.html
https://bind9.readthedocs.io/en/latest/reference.html
https://gitlab.isc.org/isc-projects/bind9/-/blob/v9_18_2/lib/dns/rbtdb.c#L4880
https://gitlab.isc.org/isc-projects/bind9/-/blob/v9_18_2/lib/dns/rbtdb.c#L4880
https://gitlab.isc.org/isc-projects/bind9/-/issues/3311
https://gitlab.isc.org/isc-projects/bind9/-/issues/3311
https://www.centurylink.com/home/help/internet/dns.html
https://www.centurylink.com/home/help/internet/dns.html
https://www.cira.ca/cybersecurity-services/canadian-shield
https://www.cira.ca/cybersecurity-services/canadian-shield
https://www.opendns.com/
https://cleanbrowsing.org/
https://community.cloudflare.com/t/unable-to-update-ddns-using-api-for-some-tlds/167228
https://community.cloudflare.com/t/unable-to-update-ddns-using-api-for-some-tlds/167228
https://1.1.1.1/dns/
https://www.sdns.cn/
https://www.comodo.com/secure-dns/
https://www.comss.ru/page.php?id=7315
https://controld.com/free-dns/
https://www.nic.cz/odvr/
https://nvd.nist.gov/vuln/detail/CVE-2012-1191
https://nvd.nist.gov/vuln/detail/CVE-2012-1191
https://dnsforfamily.com/
https://dnsforge.de/
https://www.dns-oarc.net/tools/fpdns
https://www.dnslify.com/
https://dns.watch/
https://help.dyn.com/internet-guide-setup/
https://www.fdn.fr/actions/dns/
https://freedns.zone/
http://www.freenom.world/en/index.html
https://www.verisign.com/
https://bughunters.google.com/
https://dns.google/
https://www.hackerone.com/
https://dns.he.net/
https://www.icann.org/resources/pages/policy-2012-02-25-en
https://www.icann.org/resources/pages/policy-2012-02-25-en
https://www.icann.org/en/system/files/files/guidance-domain-seizures-07mar12-en.pdf
https://www.icann.org/en/system/files/files/guidance-domain-seizures-07mar12-en.pdf
https://www.icann.org/resources/pages/approved-with-specs-2013-09-17-en
https://www.icann.org/resources/pages/approved-with-specs-2013-09-17-en
https://www.icann.org/en/system/files/files/daar-monthly-report-30apr22-en.pdf
https://www.icann.org/en/system/files/files/daar-monthly-report-30apr22-en.pdf

[65] L. Izhikevich, R. Teixeira, and Z. Durumeric, “LZR: Identifying
Unexpected Internet Services,” in Proceedings of the 30th USENIX
Security Symposium (USENIX Security ’21), 2021.

[66] P. Jeitner and H. Shulman, “Injection Attacks Reloaded: Tunnelling
Malicious Payloads over DNS,” in Proceedings of the 30th USENIX
Security Symposium (USENIX Security ’21), 2021.

[67] J. Jiang, J. Liang, K. Li, J. Li, H.-X. Duan, and J. Wu, “Ghost Domain
Names: Revoked Yet Still Resolvable,” in Proceedings of the 19th
Annual Network and Distributed System Security Symposium (NDSS
’12), 2012.

[68] J. Jung, E. Sit, H. Balakrishnan, and R. Morris, “DNS Performance
and the Effectiveness of Caching,” IEEE/ACM Transactions on Net-
working, 2002.

[69] A. J. Kalafut, M. Gupta, C. A. Cole, L. Chen, and N. E. Myers,
“An Empirical Study of Orphan DNS Servers in the Internet,” in
Proceedings of the 10th ACM SIGCOMM Internet Measurement
Conference (IMC ’10), 2010.

[70] E. Kenneally and D. Dittrich, “The Menlo Report: Ethical Princi-
ples Guiding Information and Communication Technology Research,”
SSRN Electronic Journal, 2012.

[71] A. Klein, “Cross Layer Attacks and How to Use Them (for DNS Cache
Poisoning, Device Tracking and More),” in Proceedings of 2020 IEEE
Symposium on Security and Privacy (S&P ’21), 2021.

[72] A. Klein, H. Shulman, and M. Waidner, “Counting in the Dark: DNS
Caches Discovery and Enumeration in the Internet,” in Proceedings of
the 2017 IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN ’17), 2017.

[73] Knot, “Doc,” https://knot-resolver.readthedocs.org/en/stable, 2022.

[74] Knot Resolver, “Knot Resolver,” https://www.knot-resolver.cz/, 2022.

[75] M. V. Larsen and F. Gont, “RFC 6056: Recommendations for
Transport-Protocol Port Randomization,” RFC Best Current Practice,
2011.

[76] D. C. Lawrence, W. A. Kumari, and P. Sood, “RFC 8767: Serving Stale
Data to Improve DNS Resiliency,” RFC Proposed Standard, 2020.

[77] H. Lee, A. Gireesh, R. v. Rijswijk-Deij, T. T. Kwon, and T. Chung,
“A Longitudinal and Comprehensive Study of the DANE Ecosystem
in Email,” in Proceedings of the 29th USENIX Security Symposium
(USENIX Security ’20), 2020.

[78] Level3, “DNS,” https://www.publicdns.xyz/public/level3.html, 2022.

[79] J. Leyden, “Microsoft seizes Chinese dot-org...” The Register, 2012.

[80] X. Li, B. Liu, X. Zheng, H. Duan, Q. Li, and Y. Huang, “Fast
IPv6 Network Periphery Discovery and Security Implications,” in
Proceedings of the 2021 IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN ’21), 2021.

[81] X. Li, C. Lu, B. Liu, Q. Zhang, Z. Li, H. Duan, and Q. Li, “The
Maginot Line: Attacking the Boundary of DNS Caching Protection,”
in Proceedings of the 32nd USENIX Security Symposium (USENIX
Security ’23), 2023.

[82] LibreDNS, “LibreDNS,” https://libredns.gr/, 2022.

[83] B. Liu, C. Lu, H.-X. Duan, Y. Liu, Z. Li, S. Hao, and M. Yang,
“Who Is Answering My Queries: Understanding and Characterizing
Interception of the DNS Resolution Path,” in Proceedings of the 27th
USENIX Security Symposium (USENIX Security ’18), 2018.

[84] K. Man, Z. Qian, Z. Wang, X. Zheng, Y. Huang, and H. Duan, “DNS
Cache Poisoning Attack Reloaded: Revolutions with Side Channels,”
in Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’20), 2020.

[85] K. Man, X. Zhou, and Z. Qian, “DNS Cache Poisoning Attack:
Resurrections with Side Channels,” in Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security (CCS
’21), 2021.

[86] J. Mao, M. Rabinovich, and K. Schomp, “Assessing Support for
DNS-over-TCP in the Wild,” in Proceedings of the 23rd International
Conference on Passive and Active Measurement (PAM ’22), 2022.

[87] MaraDNS, “MaraDNS,” https://maradns.samiam.org/, 2022.

[88] MaraDNS, “MaraDNS release 3.5.0022,” https://maradns.samiam.org
/security.html#CVE-2022-30256, 2022.

[89] MaxMind, “GeoLite2 Free Geolocation Data,” https://dev.maxmind.co
m/geoip/geolite2-free-geolocation-data, 2022.

[90] MediaNama, “Restriction on bulk domain registrations is for national
security: NIXI,” https://www.medianama.com/2022/02/223-nixi-bulk-
domain-registrations-reason/, 2022.

[91] X. Mi, X. Feng, X. Liao, B. Liu, X. Wang, F. Qian, Z. Li, S. Alrwais,
L. Sun, and Y. Liu, “Resident Evil: Understanding Residential IP
Proxy as a Dark Service,” in Proceedings of 2019 IEEE Symposium
on Security and Privacy (S&P ’19), 2019.

[92] Microsoft, “LockingPercent,” https://docs.microsoft.com/en-us/power
shell/module/dnsserver/set-dnsservercache, 2022.

[93] Microsoft DNS, “Domain Name System (DNS) Docs,” https://docs.m
icrosoft.com/en-us/windows-server/networking/dns/dns-top, 2022.

[94] P. V. Mockapetris, “RFC 1034: Domain Names - Concepts and
Facilities,” RFC Standard, 1987.

[95] P. V. Mockapetris, “RFC 1035: Domain Names - Implementation and
Specification,” RFC Standard, 1987.

[96] G. C. M. Moura, J. Heidemann, M. Müller, R. d. O. Schmidt, and
M. Davids, “When the Dike Breaks: Dissecting DNS Defenses During
DDoS,” in Proceedings of the Internet Measurement Conference 2018
(IMC ’18), 2018.

[97] G. C. M. Moura, J. Heidemann, R. d. O. Schmidt, and W. Hardaker,
“Cache Me If You Can: Effects of DNS Time-to-Live,” in Proceedings
of the Internet Measurement Conference (IMC ’19), 2019.

[98] Neustar, “Neustar Announces Acquisition of Verisign’s Public
DNS Service,” https://www.home.neustar/about-us/news-room/press-
releases/2020/neustar-announces-acquisition-of-verisigns-public-dns-
service, 2020.

[99] Neustar, “UltraDNS Public,” https://www.publicdns.neustar/, 2022.
[100] A. A. Niaki, W. R. Marczak, S. Farhoodi, A. McGregor, P. Gill, and

N. Weaver, “Cache Me Outside: A New Look at DNS Cache Probing,”
in Proceedings of the 22nd International Conference on Passive and
Active Measurement (PAM ’21), 2021.

[101] No-IP, “No-IP: Free Dynamic DNS,” https://www.noip.com/, 2022.
[102] Norton DNS, “Norton DNS,” https://nortondns.com/, 2022.
[103] A. Oest, Y. Safaei, P. Zhang, B. Wardman, K. Tyers, Y. Shoshitaishvili,

and A. Doupé, “PhishTime: Continuous Longitudinal Measurement of
the Effectiveness of Anti-phishing Blacklists,” in Proceedings of the
29th USENIX Security Symposium (USENIX Security ’20), 2020.

[104] A. Oest, P. Zhang, B. Wardman, E. Nunes, J. Burgis, A. Zand,
K. Thomas, A. Doupé, and G.-J. Ahn, “Sunrise to Sunset: Analyzing
the End-to-end Life Cycle and Effectiveness of Phishing Attacks
at Scale,” in Proceedings of the 29th USENIX Security Symposium
(USENIX Security ’20), 2020.

[105] OneDNS, “OneDNS,” https://onedns.net/, 2022.
[106] V. Pappas, Z. Xu, S. Lu, D. Massey, A. Terzis, and L. Zhang, “Impact

of Configuration Errors on DNS Robustness,” in Proceedings of the
2004 Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and
protocols for computer communication (SIGCOMM ’04), 2004.

[107] J. Park, D. Nyang, and A. Mohaisen, “Timing is almost everything:
Realistic evaluation of the very short intermittent ddos attacks,” in 16th
Annual Conference on Privacy, Security and Trust (PST ’18), 2018.

[108] C. Partridge and M. Allman, “Ethical Considerations in Network
Measurement Papers,” Communications of the ACM, 2016.

[109] P. Pearce, B. Jones, F. Li, R. Ensafi, N. Feamster, N. Weaver, and
V. Paxson, “Global Measurement of DNS Manipulation,” in Proceed-
ings of the 26th USENIX Security Symposium (USENIX Security ’17),
2017.

[110] D. Plohmann, K. Yakdan, M. Klatt, J. Bader, and E. Gerhards-
Padilla, “A Comprehensive Measurement Study of Domain Generating
Malware,” in Proceedings of the 25th USENIX Security Symposium
(USENIX Security ’16), 2016.

[111] J. Postel, “RFC 1591: Domain Name System Structure and Delega-
tion,” Informational, 1994.

[112] PowerDNS, “CVE-2012-1193,” https://nvd.nist.gov/vuln/detail/CVE-
2012-1193, 2012.

[113] PowerDNS, “Doc,” https://doc.powerdns.com/recursor/, 2022.

16

https://knot-resolver.readthedocs.org/en/stable
https://www.knot-resolver.cz/
https://www.publicdns.xyz/public/level3.html
https://libredns.gr/
https://maradns.samiam.org/
https://maradns.samiam.org/security.html#CVE-2022-30256
https://maradns.samiam.org/security.html#CVE-2022-30256
https://dev.maxmind.com/geoip/geolite2-free-geolocation-data
https://dev.maxmind.com/geoip/geolite2-free-geolocation-data
https://www.medianama.com/2022/02/223-nixi-bulk-domain-registrations-reason/
https://www.medianama.com/2022/02/223-nixi-bulk-domain-registrations-reason/
https://docs.microsoft.com/en-us/powershell/module/dnsserver/set-dnsservercache
https://docs.microsoft.com/en-us/powershell/module/dnsserver/set-dnsservercache
https://docs.microsoft.com/en-us/windows-server/networking/dns/dns-top
https://docs.microsoft.com/en-us/windows-server/networking/dns/dns-top
https://www.home.neustar/about-us/news-room/press-releases/2020/neustar-announces-acquisition-of-verisigns-public-dns-service
https://www.home.neustar/about-us/news-room/press-releases/2020/neustar-announces-acquisition-of-verisigns-public-dns-service
https://www.home.neustar/about-us/news-room/press-releases/2020/neustar-announces-acquisition-of-verisigns-public-dns-service
https://www.publicdns.neustar/
https://www.noip.com/
https://nortondns.com/
https://onedns.net/
https://nvd.nist.gov/vuln/detail/CVE-2012-1193
https://nvd.nist.gov/vuln/detail/CVE-2012-1193
https://doc.powerdns.com/recursor/

[114] PowerDNS, “PowerDNS,” https://www.powerdns.com/, 2022.
[115] QI-ANXIN, “QI-ANXIN Technology,” http://en.qianxin.com/, 2022.
[116] Quad101 DNS, “DNS,” https://101.101.101.101/index en.html, 2022.
[117] Quad9 DNS, “Quad9 DNS,” https://www.quad9.net/, 2022.
[118] A. Randall, E. Liu, G. Akiwate, R. Padmanabhan, G. M. Voelker,

S. Savage, and A. Schulman, “Trufflehunter: Cache Snooping Rare
Domains at Large Public DNS Resolvers,” in Proceedings of the ACM
Internet Measurement Conference (IMC ’20), 2020.

[119] Safe Surfer, “Safe Surfer DNS,” https://safesurfer.io/, 2022.
[120] SafeDNS, “SafeDNS,” https://www.safedns.com/, 2022.
[121] Sam Trenholme, “The ghost domain bug,” https://samiam.org/blog/

20120314.html, 2012.
[122] S. Santesson, M. Myers, R. Ankney, A. Malpani, S. Galperin, and

C. Adams, “RFC 6960: X. 509 Internet Public Key Infrastructure
Online Certificate Status Protocol - OCSP,” RFC Proposed Standard,
2013.

[123] K. Schomp, T. Callahan, M. Rabinovich, and M. Allman, “On mea-
suring the client-side DNS infrastructure,” in Proceedings of the 2013
Internet Measurement Conference (IMC ’13), 2013.

[124] SDNS, “Recursive Resolver,” https://github.com/semihalev/sdns, 2022.
[125] Shumon Huque, “Delegation Revalidation by DNS Resolvers,” https:

//www.huque.com/2020/05/03/ns-revalidation.html, 2020.
[126] Shumon Huque, “[dns-operations] OpenDNS, Google, Nominet - New

delegation update failure mode,” https://lists.dns-oarc.net/pipermail/d
ns-operations/2020-April/020041.html, 2020.

[127] R. D. Silva, M. Nabeel, C. Elvitigala, I. Khalil, T. Yu, and C. Keppi-
tiyagama, “Compromised or Attacker-Owned: A Large Scale Classi-
fication and Study of Hosting Domains of Malicious URLs,” in Pro-
ceedings of the 30th USENIX Security Symposium (USENIX Security
’21), 2021.

[128] Simple DNS Plus, “DNS,” https://simpledns.plus/download, 2022.
[129] SkyDNS, “SkyDNS,” https://www.skydns.ru/, 2022.
[130] R. Sommese, M. Jonker, R. v. Rijswijk-Deij, A. Dainotti, K. Claffy,

and A. Sperotto, “The Forgotten Side of DNS: Orphan and Abandoned
Records,” in 2020 IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW ’20), 2020.

[131] R. Sommese, G. C. M. Moura, M. Jonker, R. v. Rijswijk-Deij,
A. Dainotti, K. C. Claffy, and A. Sperotto, “When Parents and
Children Disagree: Diving into DNS Delegation Inconsistency,” in
Proceedings of the 21st International Conference on Passive and
Active Measurement (PAM ’20), 2020.

[132] S. Son and V. Shmatikov, “The Hitchhiker’s Guide to DNS Cache
Poisoning,” in Proceedings of the 6th Itenational ICST Conference on
Security and Privacy in Communication Systems (SecureComm ’10),
2010.

[133] Strongarm DNS, “Strongarm DNS,” https://strongarm.io/, 2022.
[134] Technitium, “Change log v8.1,” https://github.com/TechnitiumSoftwar

e/DnsServer/blob/master/CHANGELOG.md#version-81, 2022.
[135] Technitium, “Technitium DNS,” https://technitium.com/dns/, 2022.
[136] Tencent, “DNSPod Public DNS+,” https://www.dnspod.com/, 2022.
[137] Unbound, “Fix ghost domain,” https://www.nlnetlabs.nl/projects/unbo

und/download/#unbound-1-4-17, 2012.
[138] Unbound, “Ghost domain names attack,” https://www.nlnetlabs.nl/pro

jects/unbound/security-advisories/, 2012.
[139] Unbound, “About,” https://nlnetlabs.nl/projects/unbound/about/, 2022.
[140] Unbound, “Novel ”ghost domain names” attacks,” https://www.nlnetl

abs.nl/projects/unbound/security-advisories/, 2022.
[141] Unbound, “Unbound Doc,” https://unbound.docs.nlnetlabs.nl/, 2022.
[142] UncensoredDNS, “DNS,” https://blog.uncensoreddns.org/, 2022.
[143] Verisign, “Verisign Public DNS,” https://www.publicdns.xyz/public/v

erisign.html, 2015.
[144] Verisign, “Domain Name Registry,” https://www.verisign.com/, 2022.
[145] P. Vixie, R. Joffe, and F. A. C. Neves, “Draft: Improvements to

DNS Resolvers for Resiliency, Robustness, and Responsiveness,” RFC
Draft, 2010.

[146] Yandex, “Yandex.DNS,” https://dns.yandex.com/, 2022.

[147] X. Zheng, C. Lu, J. Peng, Q. Yang, D. Zhou, B. Liu, K. Man, S. Hao,
H. Duan, and Z. Qian, “Poison Over Troubled Forwarders: A Cache
Poisoning Attack Targeting DNS Forwarding Devices,” in Proceedings
of the 29th USENIX Security Symposium (USENIX Security ’20), 2020.

APPENDIX

A. DNS Software Analysis

TABLE VII. ANALYSIS WORKLOAD ON DNS SOFTWARE. “# DAYS” IS
HOW LONG WE SPENT ON SOFTWARE ANALYSIS. ALL ANALYZED

VERSIONS ARE CURRENT DURING OUR ANALYSIS PERIOD (APRIL, 2022).

Software # Key SLOC # Files # Days

BIND9 [21] 360,178 (C) 1,558 3

Knot Resolver [74] 36,941 (C) 646 2

Unbound [139] 129,695 (C) 430 2

PowerDNS Recursor [114] 86,773 (C++) 387 2

Microsoft DNS [93] - - 0.5

Simple DNS Plus [128] - - 0.5

Technitium [135] 35,656 (C#) 181 1

MaraDNS [87] 54,748 (C) 1,414 1

Total 703,991 4,616 12

B. Resolver Cache Search Process

Algorithm 1: Simplified pseudo-code of BIND9 cache searching7.
input : db (the cache database)

qname (queried domain name)
qtype (queried domain type)

output: DNS data

1 cache_find()
2 // Search down from the root of the db tree.
3 // Compare the name label by label from right to left.
4 node = find_node(db, qname)
5 if (node == NULL) then
6 goto find ns

7 // Look for data with the exact type in the node.
8 data = find_data(node, qname, qtype)
9 if (data == NULL) then

10 goto find ns

11 return data

12 find ns: // Find the closest nameserver by LSM.
13 NS = find_closest_ns(db, qname)

14 return NS

15 find_closest_ns(db, qname)
16 while (qname ! = ROOT) do
17 node = find_node(db, qname)
18 if (node ! = NULL) then
19 // Look for data of NS type in the node.
20 NSclosest = find_data(node, qname, NS)
21 if (data ! = NULL) then
22 return NSclosest

23 qname = remove the leftmost label of qname

24 return NSroot

C. Public DNS Resolver

Table VIII lists all evaluated 41 popular public resolver
vendors and the differences in their DNS resolving behaviour.

7 Summarized from the file bind9/lib/dns/rbtdb.c#L4880 [23].

17

https://www.powerdns.com/
http://en.qianxin.com/
https://101.101.101.101/index_en.html
https://www.quad9.net/
https://safesurfer.io/
https://www.safedns.com/
https://samiam.org/blog/20120314.html
https://samiam.org/blog/20120314.html
https://github.com/semihalev/sdns
https://www.huque.com/2020/05/03/ns-revalidation.html
https://www.huque.com/2020/05/03/ns-revalidation.html
https://lists.dns-oarc.net/pipermail/dns-operations/2020-April/020041.html
https://lists.dns-oarc.net/pipermail/dns-operations/2020-April/020041.html
https://simpledns.plus/download
https://www.skydns.ru/
https://strongarm.io/
https://github.com/TechnitiumSoftware/DnsServer/blob/master/CHANGELOG.md#version-81
https://github.com/TechnitiumSoftware/DnsServer/blob/master/CHANGELOG.md#version-81
https://technitium.com/dns/
https://www.dnspod.com/
https://www.nlnetlabs.nl/projects/unbound/download/#unbound-1-4-17
https://www.nlnetlabs.nl/projects/unbound/download/#unbound-1-4-17
https://www.nlnetlabs.nl/projects/unbound/security-advisories/
https://www.nlnetlabs.nl/projects/unbound/security-advisories/
https://nlnetlabs.nl/projects/unbound/about/
https://www.nlnetlabs.nl/projects/unbound/security-advisories/
https://www.nlnetlabs.nl/projects/unbound/security-advisories/
https://unbound.docs.nlnetlabs.nl/
https://blog.uncensoreddns.org/
https://www.publicdns.xyz/public/verisign.html
https://www.publicdns.xyz/public/verisign.html
https://www.verisign.com/
https://dns.yandex.com/

TABLE VIII. DNS RESOLUTION BEHAVIOR DIFFERENCES OF 41 POPULAR PUBLIC RESOLVER VENDORS

Vendor Resolver IP
Max Max Query Cache Bypass load

DNSSEC
Vulnerable?

TTL timeout count number1 balancing2 GO T1A T1R T2A T2R

OneDNS [105] 117.50.10.10 5m 10s 20 1 ✓ ✓ ✗ ✓ ✓ ✓ ✓

360 Secure DNS [2] 101.226.4.6 30m 5s 3 3 ✓ ✗ ✗ ✓ ✓ ✓ ✓

Ali DNS [10] 223.5.5.5 1h 1s 2 4 ✓ ✗ ✗ ✓ ✓ ✓ ✓

114DNS [1] 114.114.114.114 1h 10s 5 1 ✓ ✗ ✗ ✓ ✓ ✓ ✓

Quad101 DNS [116] 101.101.101.101 4h 10s 6 1 ✓ ✓ ✗ ✓ ✓ ✓ ✓

DNS for Family [40] 78.47.64.161 6h 1s 1 1 ✓ ✗ ✗ ✗ ✓ ✗ ✓

Google Public DNS [55] 8.8.8.8 6h 1s 1 19 ✗ ✓ ✗ ✗ -3 ✗ ✓4

Neustar UltraDNS [99] 156.154.70.1 12h 10s 8 4 ✓ ✓ ✗ ✓ ✓ ✓ ✓

Verisign Public DNS [143]5 64.6.64.6 12h 10s 8 4 ✓ ✓ ✗ ✓ ✓ ✓ ✓

Quad9 DNS [117] 9.9.9.9 12h 14s 7 5 ✗ ✓ ✗ ✓ ✓ ✓ ✓

Norton DNS [102] 199.85.126.10 12h 25s 9 4 ✓ ✓ ✗ ✓ ✓ ✓ ✓

Yandex.DNS [146] 77.88.8.1 <1d6 15s 8 22 ✗ ✓ ✗ ✓ ✓ ✓ ✓

CleanBrowsing DNS [28] 185.228.168.10 1d 1.5s 1 1 ✓ ✓ ✗ ✓ ✓ ✓ ✓

DNS Forge [41] 176.9.1.117 1d 1.5s 1 4 ✓ ✓ ✗ - - ✓ ✓

DNSlify DNS [43] 185.235.81.1 1d 1.5s 1 1 ✓ ✓ ✗ - - ✓ ✓

FreeDNS [50] 37.235.1.174 1d 1.5s 1 5 ✓ ✓ ✗ - - ✓ ✓

Hurricane Electric DNS [60] 74.82.42.42 1d 1.5s 1 1 ✓ ✓ ✗ - - ✓ ✓

LibreDNS [82] 88.198.92.222 1d 1.5s 1 1 ✓ ✓ ✗ - - ✓ ✓

Safe Surfer DNS [119] 104.155.237.225 1d 1.5s 1 1 ✓ ✓ ✗ - - ✓ ✓

Strongarm DNS [133] 52.3.100.184 1d 1.5s 1 1 ✓ ✓ ✗ - - ✓7 ✓

AdGuard DNS [3] 94.140.14.14 1d 10s 10 1 ✓ ✓ ✗ ✓ ✓ ✓ ✓

Dyn DNS [46] 216.146.35.35 1d 10s 8 2 ✓ ✓ ✗ ✓ ✓ ✓ ✓

Freenom World DNS [51] 80.80.80.80 1d 10s 7 15 ✗ ✓ ✗ ✓ ✓ ✓ ✓

AhaDNS [5] 185.213.26.187 1d 20s 1 1 ✓ ✓ ✗ ✓ ✓ ✓ ✓

DNSPod Public DNS+ [136] 119.28.28.28 1d 20s 34 2 ✓ ✗ ✗ ✗ ✓ ✗ ✓

FDN DNS [48] 80.67.169.12 1d 25s 8 1 ✓ ✓ ✗ ✓ ✓ ✓ ✓

SafeDNS [120] 195.46.39.39 1d 60s 8 1 ✓ ✓ ✗ ✓ ✓ ✓ ✓

SkyDNS [129] 193.58.251.251 1d 60s 8 1 ✓ ✓ ✗ ✓ ✓ ✓ ✓

Comodo Secure DNS [33] 8.20.247.10 1d 300s 2 1 ✓ ✓ ✗ ✓ ✓ ✓ ✓

CZ.NIC ODVR DNS [37] 185.43.135.1 6d 0.5s 1 1 ✓ ✓ ✗ - - ✓ ✓

CIRA Shield DNS [26] 149.112.121.10 7d 2s 2 1 ✓ ✓ ✗ ✗ ✗ ✗ ✓

OpenDNS [27] 208.67.220.120 7d 5s 5 16 ✓ ✓ ✗ ✓ ✓ ✓ ✓

Baidu DNS [18] 180.76.76.76 7d 8s 2 10 ✓ ✗ ✗ ✓ ✓ ✓ ✓

CenturyLink DNS [25] 205.171.2.26 7d 10s 6 1 ✓ ✓ ✗ ✓ ✓ ✓ ✓

ControlD DNS [35] 76.76.2.0 7d 10s 6 1 ✓ ✓ ✗ ✗ ✓ ✗ ✓

UncensoredDNS [142] 89.233.43.71 7d 10s 5 1 ✓ ✓ ✗ ✗ ✓ ✗ ✓

CNNIC sDNS [31] 1.2.4.8 7d 80s 20 2 ✓ ✓ ✗ ✓ ✓ ✓ ✓

Cloudflare DNS [30] 1.1.1.1 232−1s 2s 2 6 ✓ ✓ ✗ - - ✓ ✓

Level3 DNS [78] 4.2.2.1 231−1s 6s 6 2 ✓ ✓ ✗ ✓ ✓ ✓ ✓

DNS.WATCH [44] 84.200.69.80 231−1s 10s 10 1 ✓ ✓ ✗ ✓ ✓ ✓ ✓

Comss.one DNS [34] 93.115.24.204 231−1s 50s 14 1 ✓ ✓ ✗ ✓ ✓ ✓ ✓

1 Tested and inferred from one vantage point.
2 Bypassing the load balancing policy with same five tuples <Src-IP, Dst-IP, Src-Port, Dst-Port, Protocol> for each DNS query.
3 “-” means that the vulnerability has not been identified yet due to the small timeout value.
4 Vulnerable if delegating to a new nameserver IP address.
5 Acquired by Neustar UltraDNS [98].
6 A random TTL value will be returned for each query.
7 Vulnerable if delegating to a new NS name different from the queried domain name.
✓: Yes. ✗: No. ✓: Vulnerable. ✗: Not vulnerable.

18

	Introduction
	Background
	DNS Overview
	DNS Cache Update Policy
	Domain Name Revocation and Ghost Domain Attack

	Systematic Analysis of DNS Cache
	Generic Workflow of DNS Cache
	Attack Surface

	Attack Overview
	Threat Model
	Attack Workflow
	Comparison to Ghost Domain Attack

	Feasibility Analysis of Phoenix Domain
	Vulnerable DNS Software
	Practical Attack Considerations

	Finding Vulnerable Resolvers in the Wild
	Collecting DNS Resolvers
	Measurement Setups
	Discovering Vulnerable Public DNS Resolvers
	Detecting Vulnerable Open DNS Resolvers
	Ethical Considerations

	Discussion and Mitigation
	Mitigation
	Disclosure and Responses

	Related Work
	Conclusion
	References
	Appendix
	DNS Software Analysis
	Resolver Cache Search Process
	Public DNS Resolver

