
Trampoline Over the Air: Breaking in IoT Devices Through MQTT Brokers

Huikai Xu†1, Miao Yu†1, Yanhao Wang§, Yue Liu‡,§,
Qinsheng Hou∗,§, Zhenbang Ma§, Haixin Duan†,§, Jianwei Zhuge†2, and Baojun Liu†

†Tsinghua University ‡Southeast University ∗Shandong University
§Qi An Xin Technology Research Institute

Abstract—MQTT is widely adopted by IoT devices because
it allows for the most efficient data transfer over a variety
of communication lines. The security of MQTT has received
increasing attention in recent years, and several studies have
demonstrated the configurations of many MQTT brokers
are insecure. Adversaries are allowed to exploit vulnera-
ble brokers and publish malicious messages to subscribers.
However, little has been done to understanding the security
issues on the device side when devices handle unauthorized
MQTT messages. To fill this research gap, we propose a
fuzzing framework named SHADOWFUZZER to find client-
side vulnerabilities when processing incoming MQTT mes-
sages. To avoiding ethical issues, SHADOWFUZZER redirects
traffic destined for the actual broker to a shadow broker
under the control to monitor vulnerabilities. We select 15 IoT
devices communicating with vulnerable brokers and leverage
SHADOWFUZZER to find vulnerabilities when they parse
MQTT messages. For these devices, SHADOWFUZZER reports
34 zero-day vulnerabilities in 11 devices. We evaluated the
exploitability of these vulnerabilities and received a total of
44,000 USD bug bounty rewards. And 16 CVE/CNVD/CN-
NVD numbers have been assigned to us.

1. Introduction

The rapid development of low-cost processors and
wireless communication technologies motivates various
manufacturers to apply Internet of Things (IoT) and
Machine-to-Machine (M2M) [1] technology in their prod-
ucts. As one of the most commonly-used M2M commu-
nication protocols, MQTT (Message Queuing Telemetry
Transport) is designed to make the most efficient data
transmission over expensive and unreliable communica-
tion lines. As such, the protocol is defined with flexi-
ble interaction modes and simple message construction.
Furthermore, instead of request/response, MQTT adopts
the publish/subscribe (pub/sub) [2] model to transmit data
between IoT devices (clients) and server applications (bro-
kers). However, once security risks occur in the configu-
ration of brokers, the advantages of MQTT have become
a double-edged sword.

Previous Study on MQTT Protocol Security. The
weaknesses in the authentication and authorization of
MQTT protocol have resulted in some IoT devices and
brokers being exposed to attackers. Andy et al. [3] summa-
rized the implementation issues of MQTT, such as encryp-
tion and authentication. Similarly, some public reports [4],

1. These authors contributed equally to this work.

2. Corresponding author. zhugejw@tsinghua.edu.cn

[5] demonstrated that more than 60% of anonymously
accessible MQTT brokers leaked sensitive information.
Even if a broker has authentication enabled, there is
no guarantee that its credentials will not be stolen by
attackers. Many manufacturers embed credentials or the
sensitive information used to generate passwords into the
firmware [6], [7], making them accessible to attackers.
Some research [8]–[10] has demonstrated that such cryp-
tographic misuse can be identified automatically. Because
previous works do not explain how to use this sensitive
information to carry out specific attacks, there has been
little progress in understanding the security risks of hard-
coded credentials. A recent work [11] also demonstrated
that even popular IoT cloud platforms, such as AWS IoT,
were vulnerable in managing sensitive data such as session
and ClientId (i.e., client identifier). With these unreliable
brokers, attackers can publish unauthorized messages to
the devices (subscribers) that do not belong to them and
manipulate devices remotely [12].

Research Gap. Previous works have shown that an
attacker could send crafted messages to any target device
via vulnerable brokers just by knowing the topic the device
subscribes to. Therefore, it is critical to investigate the
security of subscribers in the MQTT messages parsing
phase. However, a few research has been done into secu-
rity vulnerabilities that may arise when clients parse these
crafted messages. Unlike attacking servers, typical client-
oriented attacks necessitate the attacker taking complete
control of the server; however, this is not necessary with
MQTT. These insecure brokers (servers) can be consid-
ered trampolines for exploit payloads to be forwarded
to subscribers. One conceivable but undiscussed situa-
tion is that when the client has a vulnerability while
processing MQTT messages, an attacker can trigger the
client’s vulnerability by publishing unauthorized messages
to the broker without taking complete control of the
broker. Attackers can even execute arbitrary code on the
device remotely without directly accessing it. We call this
exploitation a trampoline-over-the-air attack. Considering
that many brokers have authentication problems, it is
crucial to find vulnerabilities in the processing of MQTT
messages by IoT devices. Although many research works
propose methods for fuzzing network protocols or IoT
devices, they are inapplicable to detect the vulnerabilities
described above.

Previous Study on Fuzzing Network Protocols.
There are multiple works on fuzzing network protocols
to find vulnerabilities.

• Fuzzing on MQTT protocol. Luis et al. [13] intro-
duced five existing black-box fuzzing frameworks for

171

2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P)

© 2022, Huikai Xu. Under license to IEEE.
DOI 10.1109/EuroSP53844.2022.00019

20
22

 IE
EE

 7
th

 E
ur

op
ea

n
Sy

m
po

siu
m

 o
n

Se
cu

rit
y

an
d

Pr
iv

ac
y

(E
ur

oS
&

P)
 |

 9
78

-1
-6

65
4-

16
14

-6
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
EU

RO
SP

53
84

4.
20

22
.0

00
19

Authorized licensed use limited to: Tsinghua University. Downloaded on September 23,2022 at 14:00:55 UTC from IEEE Xplore. Restrictions apply.

MQTT [14]–[18]. These efforts look at how to discover
vulnerabilities introduced by processing the header
fields of the MQTT control packets. However, this
type of vulnerability only occurs on the broker side
and not on the subscriber side. Because the MQTT
packet header can be controlled only if an attacker
is a middleman or has taken over the broker com-
pletely. Some grey-box network protocol fuzzers, such
as AFLNET [19] and MultiFuzz [20], can be utilized to
find vulnerabilities on open-source MQTT implementa-
tions with customization. However, these tools require
software simulation and instrumentation outside the ac-
tual device, which is not easy due to the complexity of
the IoT hardware (e.g., vehicle’s T-Box system).

• Fuzzing on IoT Devices. Generic black-box fuzzers like
SNOOZE [21] and BOOFUZZ [22] support fuzzing on
IoT devices. These tools require complex customiza-
tion on message templates. There are also fuzzing ap-
proaches that require certain conditions for the device
under test. For example, IOTFUZZER [23] utilizes the
information carried by the IoT app to guide the fuzzing,
and SNIPUZZ [24] relies on response information to
optimize the mutation and requires the device to supply
detailed response information. However, IoT devices us-
ing the MQTT protocol do not necessarily provide these
conditions. What’s more, all these black-box fuzzers
focus on fuzzing the open services (e.g., HTTP) of
IoT devices, and cannot be directly used to detect
vulnerabilities in MQTT clients.

There are three challenges to detect vulnerabilities
in IoT devices when clients process MQTT messages.
C1: Fuzzing on pub/sub model. Traditional fuzzers apply
to the C/S model but not to the pub/sub model, which
MQTT adopts. MQTT messages are created in the pub-
lisher, transmitted via the broker, and handled by the
subscriber. Rather than migrating the traditional methods
to fit MQTT clients, we need an approach to leverage
the pub/sub model feature to make the fuzzing system
more streamlined and easy to implement. C2: Ethical
Consideration. In the pub/sub model, the test cases (i.e.,
messages) sent from the fuzzer need to pass through
the broker before being forwarded to devices. However,
publishing a mass of fuzzing data to the broker over the
air is illegal and dangerous for the vendors. C3: Crash
monitoring. Traditional black-box fuzzers can monitor the
crash by watching whether the target service is open or
whether the network connection is broken. However, in
the pub/sub model, the publisher and the subscriber are
decoupled through the broker. The subscriber does not
receive data from open service, and the fuzzer (always
act as a publisher) cannot observe the connection status
between the subscriber and the broker so that it cannot
detect crashes.

Our Work. In this paper, we aim to explore client-side
vulnerabilities that may cause trampoline-over-the-air at-
tacks and evaluate their hazards. Specifically, we describe
the threat model of the trampoline-over-the-air attack and
create a fuzzing system named SHADOWFUZZER to find
message parsing vulnerabilities on MQTT clients. SHAD-
OWFUZZER uses a shadow broker instead of the original
broker to monitor network connections, forward test cases,
and circumvent ethical issues. Finally, we present details

and exploits for these vulnerabilities case by case.
To tackle the above challenges, specifically, SHADOW-

FUZZER first leverages the pub/sub model of the MQTT
protocol to perform fuzzing test. That is, the fuzzer is
used as the publisher of the message, and the test cases
are forwarded to the subscriber devices through the broker
(C1). However, publishing test cases to the MQTT broker
deployed in the cloud is dangerous and illegal. Hence we
set up a shadow broker controlled by us to replace the
original one. The shadow broker avoids the legal issue that
affects the actual function of the broker in the real world
(C2). Because controlling the shadow broker entirely, the
fuzzer can monitor the TCP connection status between the
shadow broker and the target device or waiting for other
signals to judge whether a vulnerability is triggered (C3).
We have released our code on GitHub [25].

We select 15 IoT devices communicating with vulner-
able brokers to evaluate our fuzzing system. As a result,
SHADOWFUZZER finds 34 zero-day vulnerabilities in 11
devices, including 22 command injection vulnerabilities,
six buffer overflow bugs, one incorrect type conversion
error, and five NULL pointer dereference bugs. At the
time of paper writing, we have applied and been assigned
16 CVE/CNVD/CNNVD numbers. We assessed the ex-
ploitability of these trampoline-over-the-air vulnerabilities
and totally received 44,000 USD bug bounty rewards. We
also compare SHADOWFUZZER with other state-of-the-
art fuzzers, and the results demonstrate that our system
is more effective and targeted in finding vulnerabilities
on MQTT clients. Overall, our paper makes the following
contributions:
• We present a systematic study to discover vulnerabili-
ties in IoT devices when handling unauthorized MQTT
messages. Considering that more than half of the MQTT
brokers on the Internet have severe authentication prob-
lems, IoT devices that communicate with these brokers
will likely become the victim for bot masters once
this exploitation is noticed. Therefore, it is essential
to conduct this research for community to pay more
attention on security issues of MQTT clients.

• To find such vulnerabilities, we propose a shadow
broker to replace the original broker to implement a
black-box fuzzing system called SHADOWFUZZER. We
performed experiments on multiple real-world IoT de-
vices, and in 11 devices, SHADOWFUZZER discovered
34 zero-day vulnerabilities, which can be used to launch
trampoline-over-the-air attacks. Among these vulnera-
bilities, 17 can be exploited to launch such an attack
from anywhere on the Internet and gain control of the
target IoT devices. At the time of writing, we have not
found this type of vulnerability in the CVE list.

2. Background

In this section, we provide an overview of the MQTT
protocol and its security issues.

2.1. Overview of MQTT protocol

Machine-to-Machine Communication. M2M is an
effective way to enable wireless and wired devices to
connect and communicate directly with little or no human
intervention. According to the communication paradigms,

172

Authorized licensed use limited to: Tsinghua University. Downloaded on September 23,2022 at 14:00:55 UTC from IEEE Xplore. Restrictions apply.

DeviceBrokerAPP

Connect w/ Username/Passwd

Subscribe w/ topic

Connect w/ Username/Passwd

Publish w/ Topic/Payload

Authentication

Authorization

Authentication

Publish w/ Topic/Payload

Figure 1: Pub/Sub mode of MQTT. The MQTT protocol works
by exchanging a series of MQTT Control Packets in a defined
way.

the M2M-based protocols can be divided into two different
architectures: request/response model such as HTTP and
CoAP, and publish/subscribe model such as MQTT. Re-
gardless of the difference between the two communication
models, they have in common that the authentication
information (e.g., hard-coded credentials and seeds used
to generate credentials) of clients is stored in the firmware
of the devices instead of user’s memory.

MQTT Protocol Model. MQTT is a lightweight pro-
tocol for transmitting data between devices over TCP
protocol. Unlike protocols based on the request/response
model, MQTT adopts a publish/subscribe architecture.
Figure 1 shows the communication model of the MQTT
protocol. The subscriber obtains messages from the broker
(i.e., server) with a specific topic. The publisher transmits
messages to the broker and identifies to whom the mes-
sages are forwarded through the topic. The broker is the
center of the MQTT architecture. It is in charge of the
data exchange between the publisher and the subscriber.
During this process, the broker verifies clients’ identities
(i.e., publishers and subscribers) via the credentials sent
from the clients, and the permissions of the clients also
need to be checked when the clients publish or subscribe
to messages.

The MQTT protocol works by exchanging a series
of MQTT control packets, such as CONNECT, PUBLISH,
SUBSCRIBE, and PINGREQ, which are used for establishing
a connection, publishing messages, subscribing to mes-
sages, and session maintaining, respectively. There are
three required fields in the CONNECT control packet for
authentication: ClientId, Username, and Password. The
ClientId is the unique identification of each client, which
the broker uses to authorize the subscriber and publisher.
And the pair of Username and Password can be used by
the broker for both authentication and authorization.

2.2. Security Overview of MQTT

The MQTT protocol is designed with only a few
security considerations, but its security issues in the real
world mainly come from incomplete implementation and
configuration.

Authentication. An MQTT client could communi-
cate with a broker with or without authentication. Even

though a client can prove itself with its certificate or
username/password, there is still no guarantee that the
identity will not be forged. Since MQTT is a M2M
protocol, credentials are usually stored in the firmware of
devices so that devices can connect to the broker actively.

There are two types of MQTT credentials in the IoT
scenarios: shared credentials and exclusive credentials.
One shared credential may be used for all devices with the
same model, even the same brand. This type of credential
is usually hard-coded in firmware images and applications.
Attackers can easily extract them using unpacking and
reverse engineering techniques. The exclusive credentials
are more secure since they are always derived from the
hard-coded seeds by some dynamic schemes such as
OAuth [26] or token. However, hackers can still reproduce
the generation process of the exclusive credential and
access the target broker.

Authorization. Authorization is a mechanism to limit
the permissions of clients. Most software in the broker-
side of the MQTT protocol supports the Access Control
List (ACL) for authorization. Brokers can use username or
ClientId bound to ACL to determine which MQTT topic
can be accessed by a client, such as publish or subscribe to
a topic. However, if a broker allows anonymous access or
uses a shared credential that is hard-coded in the devices
to verify the client, it can only perform authorization on
ClientId, which can be guessed or inferred by attackers
according to prior work [11].

Secure MQTT Implementation. From a data secu-
rity perspective, authorization is more critical than au-
thentication. Because even if an attacker has bypassed
authentication and connected to the broker, he cannot
publish/subscribe to any messages if the broker authorizes
topics strictly. Therefore, a secure MQTT broker must
have sophisticated authentication and strict limits on the
topics that can be accessed. For example, Message Queue
for MQTT [27] is a lightweight messaging middleware
provided by Alibaba Cloud for mobile Internet and IoT
scenarios. It supports token-based authentication and au-
thorization. When a client wants to publish or subscribe
to messages, it first sends its identification and the topic it
wants to access to an application server, which is in charge
of client validation. If the client is valid and permitted
to access the requested topic, the server asks the MQTT
broker for a token with a privilege (R, W, RW) and expiry
date and returns it to the client. The client can access the
specified topic with the token to be the password.

Location of Broker. Typically, MQTT brokers are
deployed in the cloud, where IoT devices and controllers
communicate. But in some cases, brokers are deployed
locally on the devices. For this kind of broker, the lack
of cloud management makes it difficult to achieve secure
authentication and authorization. Therefore, attackers can
easily connect to the broker. A broker embedded in a
device is typically used in LAN communication or inter-
process communication. In the LAN communication sce-
nario, the embedded broker can be used as a pivot to attack
other subscribers in the same LAN (e.g., attack slave
devices via the embedded broker of the master device in a
Mesh network [28]). In the inter-process communication
scenario, broker and subscriber are two separate processes
in the same device. Although the broker process opens the
MQTT service, the vulnerability may be triggered in the

173

Authorized licensed use limited to: Tsinghua University. Downloaded on September 23,2022 at 14:00:55 UTC from IEEE Xplore. Restrictions apply.

Broker

Attacker
DeviceD

S1:Exploit Construction

S2:Access the Broker

S3:Unauthorized Publication

th B

Fuzzing

Manual Analysis

Extract
Credential

LAN

Target

Figure 2: Overview of the trampoline-over-the-air attack.

subscriber process.

3. Threat Model and Attack Paradigm

In this section, we describe the threat model in detail
and show how an adversary can launch a trampoline-
over-the-air attack. Figure 2 presents the overview of the
trampoline-over-the-air attack.

3.1. Threat Model

Motivation. The attack targets are the IoT devices
communicating with the MQTT broker. The adversary
aims to leverage the broker as a trampoline to transfer
exploit messages to the target devices to trigger the vul-
nerabilities when processing the MQTT payload. Unlike
previous IoT malware attacks such as Mirai [29], this
attack has the following two characteristics.

• High Penetrability. Traditional attacks usually attack the
open service of the device, requiring the adversary to
access the device’s service directly. However, in this
threat model, devices can be compromised even if they
cannot be accessed publicly (e.g., hidden under NAT).
Conceivably, it’s a terrible thing that an IoT camera in
your home’s LAN goes out of your control.

• Good Stealthiness. On the one hand, an adversary can
subscribe to a wildcard like "device/#" to obtain infor-
mation about all the online devices without performing
a large-scale scanning to search devices. On the other
hand, if the adversary utilizes the compromised devices
to launch other attacks such as DDoS, it is difficult to
trace the attack source because these devices may not
be publicly accessible.

Assumptions. We assume that the adversary can con-
nect to the MQTT broker successfully. Three possible
flaws can lead to such an attack. (i) The MQTT broker
does not require a password. (ii) The credentials are hard-
coded in the mobile applications or the devices’ firmware,
which can be easily extracted. (iii) The credentials are
derived from hard-coded and random information, which
adversaries can replay with. We also assume that the bro-
ker is not configured correctly for authorization, making
an authenticated adversary subscribe to any topic and

publish messages to devices that do not belong to them.
Typically, a broker with inadequate authentication also has
an issue with authorization. It should be declared that an
adversary has no control of the MQTT broker in this threat
model.

Positions. As stated in §2.2, brokers in different loca-
tions may present different attack scenarios and also have
different requirements for the position of the adversary.

• Remote Broker. A broker deployed in the cloud com-
pletely isolates publishers and subscribers, and both
can be located anywhere they can access the Internet.
Therefore, an adversary acts as a publisher, and there
are no restrictions on the adversary’s location in the
threat model.

• Local Broker. A broker embedded in a device is typ-
ically used in LAN communication or inter-process
communication. Since most IoT devices are located on
a local area network, an adversary needs to be on the
same LAN as the broker to access it in this scenario.

3.2. Attack Steps

Three steps are needed to launch a trampoline-over-
the-air attack: construct the exploit, access the broker and
publish unauthorized messages.

S1: Exploit Construction.An adversary manage to
find vulnerability when the target device processes MQTT
messages via vulnerability discovery techniques, such as
fuzzing or manual analysis. Then they construct the ex-
ploit payloads as the MQTT messages and prepare for the
real-world attack.

S2: Access the Broker. To make an MQTT broker
trampoline the exploit, an adversary must connect to the
broker successfully at the beginning. The adversary can
directly send CONNECT control packet without credentials
to connect to brokers that do not require authentication.
For targets requiring hard-coded information to act as (or
generate) credentials, an adversary needs to do reverse
engineering to extract and infer the credentials.

S3: Unauthorized Publication. The topic of the ex-
ploit message usually contains the device’s identity in-
formation, which can be obtained through a wildcard
subscription. After gaining the necessary information, the

174

Authorized licensed use limited to: Tsinghua University. Downloaded on September 23,2022 at 14:00:55 UTC from IEEE Xplore. Restrictions apply.

Shadow BrokerDevice

Broker

Pre-communication
Simulation

Seed Collection

Message Recorder

Message Structure
Analysis

Rules & Strategies

Seed MutatorFuzzer

Crash Monitoring

Command Injection
Monitoring

Task Scheduling

Seed

TCP Session

ICMP

PayloadOutput:Alerts

Publish

Subscribe

Redirection

Figure 3: Overview of SHADOWFUZZER.

adversary publishes the exploit messages to the broker
with the same topic subscribed by the target device.
According to the MQTT topic, the broker then forwards
the crafted messages to the subscriber and triggers the
vulnerability.

4. Fuzzing System Design

In this section, we present the detailed design of
SHADOWFUZZER. IoT devices receive messages from
users as subscribers, so instead of opening ports to wait
for data, they actively establish a long-lived connection
to the broker to fetch messages continuously. Hence the
idea is to have the device connect to a shadow broker
that we control and utilize the broker to forward our
test cases. To discover vulnerabilities in the processing
of MQTT messages by the device, SHADOWFUZZER first
simulates the device to collect initial messages from the
actual broker. Next, it mutates the message based on its
format and publishes the mutated test cases to the shadow
broker. The shadow broker finally forwards the test cases
to the device according to the topic. With the help of
the shadow broker, SHADOWFUZZER can capture bug
information once a vulnerability occurs while the device
processes a test case.

SHADOWFUZZER consists of four modules: message
recorder, shadow broker, seed mutator, and fuzzer. Fig-
ure 3 illustrates the workflow and the modules of SHAD-
OWFUZZER. We will explain their workflow and introduce
our solution to the problems in this section.

• Shadow Broker is the core of SHADOWFUZZER. This
module has two capabilities. First, like all MQTT bro-
kers, it is responsible for forwarding test cases published
from the fuzzer to the tested IoT device. And it avoids
the ethical issue of sending test cases to real-world
brokers. Second, it assists the fuzzer in monitoring the
network connection status to the tested device. (§4.1)

• Message Recorder simulates the operations of target
clients (i.e., subscribers) to subscribe to the same topics
and collects messages from the broker. These messages
are published from publishers (i.e., controllers), such
as mobile applications and web applications. We de-

1 int packet__read(struct mosquitto *mosq)
2 {
3 /* If we've not got the MQTT control packet type, read one

and save it.*/
4 if (!mosq->in_packet.command){
5 /* Read the first byte of the TCP payload, which is the

MQTT control packet type. */
6 read_length = net__read(mosq, &byte, 1);
7 if (read_length == 1) {
8 mosq->in_packet.command = byte;
9 } else if (read_length == 0){
10 /* If the read_length is zero, the shadow broker finds

a crash. */
11 log_print("Crash Found!");
12 fuzz_notify_fuzzer(CRASH);
13 }
14 }
15 }

Listing 1: The C pseudocode to detect crash on the shadow
broker.

duplicate these messages and store them as initial seeds
in our local database. (§4.2)

• Seed Mutator generates test cases for fuzzer based on
initial seeds. It parses the message format and searches
the corresponding format template to mutate each field
of the message. According to related works [24], [30],
random mutations are inefficient for generating valid
structured data, such as MQTT messages. We also need
to design effective mutation rules for triggering various
kinds of vulnerabilities. (§4.3)

• Fuzzer acts as a publisher and sends mutational mes-
sages to the target device via the shadow broker. It is
deployed on the same machine as the shadow broker
to avoid unnecessary network delays. In this paper, we
mainly focus on two types of vulnerabilities: memory
corruption and command injection. How to discover
these types of vulnerabilities while they occur in the
subscribers? We will explain it in §4.4.

4.1. Shadow Broker

Traditional black-box fuzzing tools mainly aim at open
services (ports), unlike client-oriented fuzzing. Since the
IoT device is the client in our threat model, we need to
return the test cases to the device after the device connects
to the broker. Because the actual broker is not under our

175

Authorized licensed use limited to: Tsinghua University. Downloaded on September 23,2022 at 14:00:55 UTC from IEEE Xplore. Restrictions apply.

control, it is impossible to return data directly from the
broker to the device. We take advantage of the MQTT
protocol to perform fuzzing on the IoT clients, that is,
using the fuzzer as the publisher and leveraging a shadow
broker under our control to receive test cases published
from the fuzzer and forward them to the IoT device.

Shadow broker is the core module of our fuzzing
approach. It serves two purposes. First, the shadow broker
replaces the actual broker to forward test cases published
from the fuzzer to the device and avoids the ethical issue
of sending malformed data to the actual broker. Second,
the shadow broker monitors the TCP connection between
the device and the broker to determine whether a crash
occurs. No authentication and authorization is configured
on the shadow broker so that any client can successfully
build an MQTT connection with it. We implement the
shadow broker based on Eclipse Mosquitto [31], one of the
most popular open-source MQTT implementations written
in C language.

To make the device to connect to the shadow broker,
we need to redirect the device-to-cloud traffic to it. This
part of the work requires manual assistance and will be
introduced in §5.2. Because of the client-oriented fuzzing,
it is impossible to monitor crashes by detecting whether
the target port is open. However, controlling the shadow
broker makes it feasible for us to detect crashes by moni-
toring the state of the TCP connection between the device
and the shadow broker. Typically, the subscription session
will not terminate until the program crashes or the device
shutdown. While a crash occurs, the subscriber sends a
TCP packet with an RST or FIN flag to the broker to
terminate the TCP connection. This type of TCP packet
does not contain any payload on the application layer,
which is an abnormal behavior of the subscriber since each
MQTT control packet must contain at least 2 bytes of the
fixed header. Therefore, the shadow broker detects crashes
by actively monitoring whether received TCP packets have
application-layer payloads. Listing 1 is the pseudocode of
detecting client-side crashes on the shadow broker. The
shadow broker monitors the length of data read from
the MQTT control packet’s first byte each time. If the
read length is zero, the shadow broker determines it has
detected a crash.

4.2. Information Gathering

Pre-communication Simulation. For few of our tar-
gets, there is some necessary information to make the
MQTT communication between the shadow broker and
target device works, and we obtain it through pre-
communication simulation. For example, in Figure 4, a
cookie used in a subscriber’s MQTT communication is
created by the device during the preparatory phase before
the MQTT communication. Its value is random and cannot
be changed in any MQTT message sent from the broker
to the device (until the subscription process restarts).
Otherwise, the subscriber will not parse the rest of the
message. Besides, as Figure 4 shows, a device gets the
dynamic address and port of the broker from a server
and uses them to communicate with the corresponding
MQTT broker. We manually analyze the communication
packets and MQTT messages to determine the critical
information for MQTT communication. Then we simulate

Request

Response

“Cookie”: “ABCDEF123”, “DeviceID”: “123”, “method”:“Register”

“result”: “successful”

“method”: “DevGetMqttServer”

“result”: “tcp://rot-05.***e.com:1883”

MQTT Subscribe

MQTT Connect tcp://rot-05.***e.com:1883

Topic: device/ 123

“method”: “Setparam”, “Cookie”:“ABCDEF123”, “cmd”:”reboot”

MQTT Publish

Device Pre-Server

Broker

Figure 4: Pre-communication Sample.

1 domName = getDomainNameFromHttp();
2 char cmdbuf[128];
3 snprintf(cmdbuf, sizeof(cmdbuf), "ping %s", domName);
4 system(cmdbuf);

Listing 2: A command injection vulnerability example. This
code fragment concatenates the domain name string received
from the outside message to the “ping” command and calls the
“system” function to run the Linux command.

the pre-communication process between different devices
and their servers to obtain the information and use it in
the following MQTT sessions.

Initial Seed Collection. Since we plan to find vulner-
abilities in the device’s processing of MQTT messages,
we need to obtain the initial messages before fuzzing to
generate mutated test cases. A man in the middle can
monitor messages returned from the broker to the device.
However, for the MQTT protocol, it can be achieved
by simulating the device to subscribe to the same topic.
Zhou et al. [6] created a phantom device (program) that
mimics an actual device to assist the analysis. Similarly,
we use the message recorder module to subscribe to the
same topic as the tested device. The topic string usually
contains unique information such as a device ID or a
MAC address, and it can be obtained from the traffic or
extracted from the firmware. For example, the function
mosquitto subscribe [32] in mosquitto C library is in
charge of subscription, and the third parameter is the topic
string, from which we can extract the topic. For real-world
attackers, they can subscribe to a wildcard to get all online
topics and then launch a large-scale attack.

After the message recorder subscribes to the topic,
we trigger the device controller’s UI controls (e.g., web
app, mobile app) to generate various MQTT messages.
The device controller acts as the publisher, it publishes
these messages to the broker, and the broker forwards the
messages to the message recorder. Finally, the message
recorder stores these messages as initial seeds.

4.3. Mutation Rules

We design the following mutation rules to generate
valid structured MQTT messages to trigger vulnerabilities.

Rules for Command Injection. A command injection
vulnerability [33] is an attack that involves executing
arbitrary commands on a system. It usually occurs while

176

Authorized licensed use limited to: Tsinghua University. Downloaded on September 23,2022 at 14:00:55 UTC from IEEE Xplore. Restrictions apply.

passing unsafe user-supplied data to an interface, which
has insufficient input validation. Listing 2 is an example
of a command injection vulnerability. The code receives
a domain name string from the HTTP payload and then
concatenates the domain name to a format string to gen-
erate a command. The server process will run a valid
ping command if a user inputs a valid domain name
like "www.google.com". However, if an attacker inputs a
malicious string "www.app$(reboot)le.com", the server
process will first run the injected "reboot" command,
which causes a DoS attack. In addition to the tradi-
tional rules such as command concatenation and command
insertion used by other black-box fuzzers like Boofuzz,
we also extract rules from GTFOBins [34] and use them
to construct command injection strings for the string-
type fields of the MQTT messages. GTFOBins is an
open-source project listing a wide range of Unix bina-
ries with details of leveraging them to execute system
commands. For example, GTFOBins tells that arbitrary
system commands can be executed by injecting malicious
arguments into the sed command, a command-line utility
for file searching, find and replace, insertion or deletion.
A command like "sed -n ‘1e reboot’ /etc/hosts" will
cause the system to execute the reboot command. If
the target program receives parameters from the outside
and concatenates them to the sed command, a test case
with the rule "-n ‘1e reboot’ /etc/hosts" will make
the device reboot. We select 20 items from GTFOBins
and list them in Table 6.

Rules for Memory Corruption. Similar with IOT-
FUZZER, the mutator uses the following rules to detect
memory corruptions. (i) Changing the size of strings.
The mutator significantly increases the size of the string-
type fields by appending plenty of redundant characters to
trigger the buffer overflow bugs, or sets the fields to empty
strings to find NULL pointer dereference vulnerabilities.
Significantly, the rules also include generating a blank
MQTT message and concatenating the original string
with the malformed strings. (ii) Arithmetic operations or
interesting values replacement. Similar to AFL and other
fuzzers, the mutator changes the value of the integer-
type and float-type fields with extremums, such as zero
or negative numbers to trigger the integer overflow bugs.

Other Strategies. (i) For bool-type fields, the mutator
changes their value from True to False, and vice versa. (ii)
For list-type fields, the mutator adds elements or removes
elements from the lists. (iii) The mutator will also change
the type of various fields, such as replacing a string with
an integer value or changing the list to a single value.
These strategies also may lead to logic errors or crashes.

4.4. Vulnerability Monitoring

Specifically, SHADOWFUZZER adopts different moni-
toring strategies for different types of vulnerabilities.

Crash Monitoring. As mentioned in §4.1, we lever-
age the shadow broker to monitor the status of the TCP
connection between the subscriber and the shadow broker.
Once the subscriber crashes, the TCP session will discon-
nect immediately, and the shadow broker would notify
the fuzzer as soon as it notices this abnormal behavior.
After receiving the notification, the fuzzer suspends the

fuzzing process and record the current message as Proof-
of-Concept.

Command Injection Monitoring. To monitor com-
mand injection vulnerabilities, previous work like Boofuzz
detect command injection vulnerabilities by injecting sys-
tem commands like reboot or shutdown, leading to the
device shut down and thus blocks the fuzzing process.
In our work, we leverage ping command to detect this
type of vulnerability. The mutator inserts a command
like "ping -n 1 IP" into the fuzzing payloads instead
of the above commands, where IP is the IP address of
the fuzzer. Once a command injection vulnerability is
triggered, the device will send an ICMP Echo request
packet to the fuzzer, which can be used as a signal that
a command injection vulnerability exists. In this way,
the fuzzer can detect command injection vulnerabilities
without interrupting the fuzzing process. This approach is
also used in [30].

5. Implementation

In this section, we describe how to look for IoT de-
vices communicating with vulnerable brokers and present
the implementation of SHADOWFUZZER.

5.1. IoT Device Selection

To find targets that might be subject to the trampoline-
over-the-air attack described in §3, we start with the
following aspects to look for IoT devices communicating
with the brokers configured with weak authentication.

Find Anonymously Accessible Brokers. There are
multiple measures to find this kind of MQTT broker. For
example, one can send MQTT CONNECT control packets
with no credential to the broker and observe if the return
code is zero, which means connecting successfully [35].
However, this approach carries legal risks. Several cy-
berspace search engines have integrated this feature. In
our experiment, we take Censys [36] as the data source be-
cause this platform can provide the results of anonymously
accessible brokers in both plaintext and TLS-wrapped
MQTT protocols. We have requested and been approved
for non-commercial research on Censys datasets. For Cen-
sys Search 1.0, rules 1883.mqtt.banner.connack.raw:0
and 8883.mqtt.banner.connack.raw:0 can list all the
MQTT brokers opened on the default ports that allow
anonymous access. It means that selecting the hosts us-
ing the MQTT protocol in port 1883 or 8883 and the
return code in the CONNACK control packet is 0 (connection
accepted). The rule has been changed in Censys Search
2.0 [37] after November 30, 2021. It is important to
emphasize that we did not validate all the hosts in the
result and only performed validation on the targets we list
in this paper.

Find Brokers with Hard-coded Credentials Con-
figured. Many manufacturers configure the same cre-
dential for all devices to facilitate management. Hard-
coded credentials are typically stored in applications and
firmware images as strings and passed as arguments to the
functions used to set the credentials or establish an MQTT
connection to the broker. Inspired by previous work done
by Wang et al. [38], we leverage a backward taint analysis
from a sensitive function to a constant string to find

177

Authorized licensed use limited to: Tsinghua University. Downloaded on September 23,2022 at 14:00:55 UTC from IEEE Xplore. Restrictions apply.

1 /* Source Code: */
2 private ApiNetWorkHttpImpl() {
3 this.userName = "username";
4 }
5 this.options.setUserName(this.userName);
6

7 /* Smali Code: */
8 const-string v0, "username"
9 iput-object v0, p0, ApiNetWorkHttpImpl ->userName:String
10 iget-object v3, p0, ApiNetWorkHttpImpl ->userName:String
11 invoke-virtual MqttConnectOptions ->setUserName(String)...,v3

Listing 3: Pseudocode of the backward taint analysis to find
hard-coded credentials.

strings used as credentials. We built scripts to implement
the backward taint analysis on mobile applications and
firmware images. As Listing 3 shows, the scripts locate
the caller function firstly (Line 5 & Line 11) to search the
hard-coded username in an Android app (Line 3 & Line
8). This part of code calls a standard username setting
function (i.e., setUserName) of a widely used MQTT SDK
(i.e., Paho [39]). Because variable v3 is used to store the
argument related to the username, the scripts tracks the
data flow from v3 to its data source, the constant string
"username".

Find Brokers with Dynamically Generated Creden-
tials Configured. We perform manual reverse analysis in
IoT devices due to the difficulty of automatically detecting
credentials generated dynamically. We try to reproduce the
generation procedure and obtain temporary or permanent
credentials. Although the credential generated by each
device is different, attackers can still perform unauthorized
subscription and publication after accessing the broker
successfully if the broker lacks permission management.

After the selection, we extract the broker’s address and
purchase or rent the corresponding devices as our data set
for fuzzing.

5.2. System Implementation

We implement our system with around 3,358 lines of
Python code, 352 lines of C code (add to mosquitto), and
284 lines of Go code. This section will also introduce the
manual efforts used in fuzzing processes.

Taint Analysis of Hard-coded Credentials. We im-
plement the taint analysis of hard-coded credentials based
on Janus [40], Androguard [41], and Binary Ninja Python
API [42]. For mobile application analysis, we first use
the Janus platform to search for the applications that use
the Paho Android Service [39], a prevailing MQTT client
library. Then for each application, the engine performs a
backward taint analysis (implemented based on Andro-
guard) to locate the hard-coded credential. For firmware
images, we leverage Binary Ninja Python API to detect
hard-coded credentials.

Fuzzing System. We build the shadow broker based
on Eclipse Mosquitto version 1.6.8. We modify the source
code of Mosquitto to add code to monitor TCP connec-
tions and communicate with the fuzzer. The IP addresses
of the tested device and the fuzzer should be added into
the broker’s configuration file, and there is no need to
configure credentials so that the shadow broker can receive
any CONNECT request. The message recorder acts as a
subscriber and the fuzzer acts as a publisher. Both are im-
plemented based on Paho Python. We extract the valuable

items in GTFOBins and import them into the mutation
rules to find more command injection vulnerabilities.

Manual Efforts on Fuzzing. Since our test target is
client and not server, the tested client needs to connect
to our shadow broker before starting the test actively.
Therefore, few manual efforts are inevitable for some of
the test devices.

• Certificate Replacement. An increasing number of de-
vices use TLS-based MQTT instead of the plaintext pro-
tocol for security consideration. The device first verifies
the broker’s certificate using the embedded CA certifi-
cate before establishing an MQTT connection with the
broker. If directly redirect traffic to the shadow broker,
the client can not build a TLS connection with the
shadow broker because it fails to validate the broker’s
certificate with the original CA certificate. To solve this
problem, we use the software OpenSSL [43] to create
a self-signed root certificate to replace the original
broker’s CA certificate embedded in the device and
use the new certificate to issue a server-side certificate.
Finally, we place this server-side certificate into the
shadow broker. In this way, while the device connects
to the shadow broker, the shadow broker’s certificate is
validated with this self-signed root certificate.

• Traffic Redirection. In order to replace the original
broker with the shadow broker, we need to redirect
the traffic to the shadow broker. We choose different
schemes depending on the location of the broker.

– Remote Broker. There are multiple approaches to redi-
rect the traffic sent from the test device to the shadow
broker. Domain name hijacking is the most effective
method. For the devices using a domain name to
connect to the remote broker, we hijack the domain
name at the gateway to the IP address of the shadow
broker or modify the hosts file3 in the operating
system of the target device (if the subscriber contains
this file). For the device only using an IP address to
connect to the broker, we use iptables [44] in the
gateway to redirect the traffic to the shadow broker.

– Local Broker. We adopt two approaches to redirect the
MQTT traffic for the devices embedding local broker.
(i) For devices that load the broker address from a
configuration file or command parameter, we change
the IP address in the configuration file or parameter
and reload the process. (ii) For the program that uses
a hard-coded string (e.g., localhost, 127.0.0.1) as
the broker’s address, we extract the binary executa-
bles and replace these strings with the IP address of
the shadow broker so that the program can connect
to it after been reloaded.

Parts of these operations require that the device be avail-
able with a Linux shell via interfaces such as Telnet
or UART (Universal Asynchronous Receiver/Transmitter)
firstly. They are necessary because it is not easy to
get TLS clients to change the direction of a network
connection and establish it successfully. We adopt these
engineering techniques on some devices to perform
fuzzing on more devices and find more security issues.

3. Hosts file is used to maps hostnames to IP addresses.

178

Authorized licensed use limited to: Tsinghua University. Downloaded on September 23,2022 at 14:00:55 UTC from IEEE Xplore. Restrictions apply.

5.3. Experiment Setup

Data Set. Using the methods introduced in §5.1, we
finally found out and identified 5,179 MQTT brokers that
could be accessed anonymously, and 28 were configured
with hard-coded credentials. We also found two brokers
were configured with dynamically generated credentials
whose generation process could be deduced. From above
vulnerable brokers, we select 15 of them to purchase
or rent the corresponding IoT devices as our data set.
Our choice is based on three principles: (i) the target
devices should cover as many types as possible, (ii)
the corresponding brands of devices should be as well-
known as possible, (iii) the devices should be available
to us and have a certain number of users. As can be
seen in Table 4, there are multiple types of devices we
selected, such as wireless routers, access points, smart
speakers and automobiles. The brands of these devices
also include well-known manufacturers like ZTE, Xiaomi,
and Linksys. Among these IoT devices, 11 communicate
with remote brokers, and 4 communicate with embedded
brokers. All of these devices subscribe to MQTT messages
from their brokers, respectively, and we only experiment
on our own devices.

Testing Environment. We conduct our experiment on
a CentOS 7 Server with Intel Core i9 8-core × 2.30 GHz
CPU and 8GB RAM, and the devices get tested on the
same local network.

Tools for Comparison. It is difficult to find tools suit-
able for fuzzing MQTT clients to compare with SHADOW-
FUZZER. We finally selected two open-source fuzzers for
comparison: COTOPAXI [45] and BOOFUZZ configured
with our shadow broker.

• COTOPAXI. Samsung produces this tool for security
testing IoT devices using protocols such as HTTP,
AMQP, and MQTT. The authors claim in the specifi-
cation that the tool supports fuzzing MQTT clients. It
provides a module named client proto fuzzer that
allows users to test protocol clients, and MQTT is one
of the supported protocols. The application will set up
a server for listening requests from the tested client and
return test cases in the same TCP connection.

• BOOFUZZ with the shadow broker. BOOFUZZ is a state-
of-the-art fuzzer that has been widely used in recent
years. Unlike COTOPAXI, BOOFUZZ requires a manu-
ally created template to guide the fuzzing process. Since
this tool does not support client-oriented testing directly,
our shadow broker is combined to assist experiments.
We feed seed messages obtained from our message
recorder to BOOFUZZ and create the template using
BOOFUZZ API.

6. Evaluation

We evaluate our system on real-world devices to an-
swer the following research questions:

• RQ1: Can SHADOWFUZZER find real-world vulnera-
bilities on the target devices (subscribers)? (§6.1)

• RQ2: Can these vulnerabilities be exploited in accor-
dance with trampoline-over-the-air attack? What are the
effects of these vulnerabilities? (§6.2, §6.3)

1 /* Seed Message 1 */
2 {"version":"3","contents":{"command":"support cmd 01"}}
3 /* Seed Message 2 */
4 {"version":"3","contents":{"command":"tech support command 1"}}
5 /* Source Code */
6 int do_exec_command(){
7 if (!strncmp(command, "tech_support_command", 0x14u) || !

strncmp(command, "support_cmd", 0xBu)){
8 sprintf(s, " &>%s", "/tmp/command_result");
9 strcat(command, s);
10 system(command)
11 }
12 }

Listing 4: Two seed messages and the vulnerable code fragment
of Alcatel-Lucent OAW-AP1101. Although different actions
trigger these two seed messages, they are processed by the same
piece of code.

6.1. Evaluation on Fuzzing

In this part, we present the vulnerabilities discovered
by the SHADOWFUZZER and evaluate the efficiency and
the accuracy to demonstrate that it is helpful to discover
vulnerabilities under trampoline-over-the-air attack.

Real-world Vulnerabilities. As shown in Table 1,
SHADOWFUZZER finds 34 zero-day vulnerabilities in 11
devices, and all of these vulnerabilities have been reported
to the manufacturers once we verified them. At the time of
paper writing, we have been assigned 16 CVE/CNVD/C-
NNVD numbers due to their severe security consequence
and we exhibit them in Table 5.

Among them, 22 bugs are command injection vulner-
abilities; six of them are buffer overflow bugs; one is
incorrect type conversion error [46], and the other five
are NULL pointer dereference bugs. All of these vulnera-
bilities can be triggered by publishing crafted payload to
the vulnerable brokers from LAN or the Internet.

All the command injection vulnerabilities can be used
to gain root privilege on devices. These vulnerabilities are
easy to exploit and do not require attackers to do memory
layouts. The five NULL pointer dereference vulnerabilities
are triggered by a blank message. There is no limit on
the minimum length of messages in the MQTT protocol
specification. However, in some MQTT client libraries like
Eclipse Mosquitto, the processing of zero-length messages
is dangerous. When receiving an MQTT message with no
content, Mosquitto sets the pointer of the message payload
to NULL. If developers are not aware of this issue, they
will likely use this NULL pointer to parse the data directly,
which leads to a NULL pointer dereference error.

Efficiency. We measure the efficiency of the fuzzing
system by the number of vulnerabilities found (command
injection and memory corruption, respectively), the total
time it took to execute all test cases, and the number of
messages generated. The results are listed in Table 2.

We experimented on COTOPAXI v.1.7.0 (the newest
version before the submission) and launched the
client proto fuzzer with the MQTT protocol. Accord-
ingly, we redirected the traffic from the original broker
to the COTOPAXI server and managed to get the client
to connect to it. However, each time a device tried to
send a CONNECT control packet to connect to the server,
COTOPAXI only returned a raw TCP packet with random
payload, not the CONNACK packet expected. It prevents the
client from successfully establishing an MQTT connection
with COTOPAXI, and thus it is impossible to perform a
fuzzing test on the MQTT message parsing stage. We

179

Authorized licensed use limited to: Tsinghua University. Downloaded on September 23,2022 at 14:00:55 UTC from IEEE Xplore. Restrictions apply.

TABLE 1: Vulnerabilities. For the bug type, NPD means NULL pointer dereference, CI represents command injection, BO means
buffer overflow, TE means incorrect type conversion. For the bug effect, RCE represents remote code execution, DoS represents denial
of service. # represents the number of vulnerabilities. S-cred represents shared credential. D-cred represents dynamic credential.

Manufacturer Type Model Vulnerability Broker FieldType # Effect Location Authentication
ZTE Wireless Router E8820 NPD 1 DoS Remote S-cred Home

TOPSEC Access Point TAP-62200
NPD 1 DoS

Remote � OfficeCI 3 RCE
BO 1 RCE, DoS

Alcatel-Lucent Access Point OAW-AP1101
NPD 1 DoS

Remote � OfficeCI 3 RCE
BO 1 RCE, DoS

HAN Networks Access Point AP211
NPD 1 DoS

Remote � OfficeCI 3 RCE
BO 1 RCE, DoS

Cetron Access Controller G500SE CI 3 RCE Remote S-cred Office
Xiaomi Smart Speaker Xiao AI Speaker Pro CI 1 RCE Local � Home

Totolink Wireless Router T10
CI 6 RCE

Local � HomeTE 1 DoS
BO 1 RCE, DoS

SAIC-GM-Wuling Vehicle New Baojun
CI 1 RCE

Local � Transportation
BO 1 RCE, DoS

Rokid Smart Speaker Rokid Mini CI 1 RCE Remote D-cred Home

Linksys Wireless Router Velop
CI 1 RCE

Local � Home
NPD 1 DoS

Brilliance Auto Vehicle V7 BO 1 RCE, DoS Remote � Transportation

analyzed the source code of COTOPAXI and found that the
module does not set up the server according to the specific
application layer protocol, but only listens on a TCP or
UDP port, waits for requests, and returns random data.
COTOPAXI does not follow the protocol state machine to
establish a full MQTT connection. As a result, we did not
compare our approach with this tool.

With the help of the shadow broker, BOOFUZZ has the
ability to send test cases to the shadow broker and eventu-
ally to the IoT devices. We made templates for each seed
of each device and loaded BOOFUZZ with the shadow
broker to test them. For each device, BOOFUZZ only ran
for no more than 24 hours. From Table 2, we can see that
SHADOWFUZZER generated fewer test cases and took less
time but discovered more vulnerabilities than BOOFUZZ.
This is because (i) to support more protocols (e.g., HTTP),
boofuzz has plenty of items in its mutation rules that are
useless for the MQTT protocol, but SHADOWFUZZER are
more targeted to the MQTT protocol and IoT devices. (ii)
SHADOWFUZZER contains mutation rules that BOOFUZZ
does not support. For instance, the command injection vul-
nerability of Linksys Velop wireless router was triggered
by the test case generated by the mutation rule extracted
from GTFOBins, which we have introduced in §4.3. Fur-
thermore, all the NULL pointer dereference vulnerabilities
discovered by SHADOWFUZZER were triggered by an
MQTT message with no payload. However, BOOFUZZ
mutates each field based on templates, not generating
such an empty message. (iii) To detect command injection
vulnerabilities, BOOFUZZ inserts reboot command into
test cases, making devices reload multiple times during the
fuzzing. As the improvement, SHADOWFUZZER inserts
ping command and listens for ICMP packets to detect
command injection bugs, which avoids interrupting the
fuzzing process.

We do not adopt the approach like COTOPAXI to send
the messages from server to client directly. Although it is
a general idea to perform client-oriented fuzzing, it is not
necessary for a third-party communication protocol such
as MQTT. Because we can directly leverage the feature of
the MQTT protocol to publish test cases from publisher to
subscriber, which is easy to implement with the shadow

broker and open-source MQTT SDKs.
False Positive. As Table 3 shows, there are several

false positives in the crash and command injection alerts
monitored by SHADOWFUZZER. Two reasons lead to the
false positives in command injection vulnerabilities. On
the one hand, several bugs occurred in the same code
fragment. We manually analyzed all the bug alerts and ex-
cluded the duplicate alerts. As shown in Listing 4, because
both seed messages result in executing to the vulnerable
branch (Line 7), test cases generated based on either can
trigger the vulnerability in line 10. On the other hand, one
command injection vulnerability returns multiple ICMP
echo request packets and makes SHADOWFUZZER report
several times. For Totolink T10 wireless router, the ping
command injected in the preceding message is executed
by the vulnerable program more than once, causing the
shadow broker to receive multiple ICMP packets. The
false positives of crash are caused by unknown network
problems. As can be seen from the table, parts of the
devices have poor handling of network data, resulting
in frequent disconnection of the network session during
fuzzing.

6.2. Practical Implications Evaluation

Global Distribution of the Vulnerable Brokers.
The authentication and authorization issues on MQTT
brokers are the root cause of the trampoline-over-the-
air attack. There are 124,5864 MQTT brokers globally
reported by Censys. Of all these brokers, 74,500 (60%)
can be accessed anonymously, which can be used to
lauch the trampoline-over-the-air attack. We draw a figure
to display the global distribution of these brokers. The
result is shown in Figure 5. The top three countries are
South Korea, China, and the United States, containing
27,413, 20,220, and 6,417 vulnerable brokers, respec-
tively. Compared to the result in 2018 [5], the number
of MQTT brokers has tripled. However, the proportion of
the anonymously accessible brokers only decreased from
65% to 60%, indicating that the security of MQTT brokers
remains a low priority.

4. The data was obtained on October 15, 2020.

180

Authorized licensed use limited to: Tsinghua University. Downloaded on September 23,2022 at 14:00:55 UTC from IEEE Xplore. Restrictions apply.

TABLE 2: Fuzzing Efficiency. Total represents the total number of reported bugs in the five fuzzing rounds, Time means the average
time of the five rounds, Messages illustrates the number of test cases.

Device SHADOWFUZZER BOOFUZZ w/ Shadow Broker
#Total #CI #Crash Time #Messages #Seed #Total #CI #Crash Time #Messages #Seed

ZTE E8820 1 0 1 1.7h 6049 17 0 0 0 >24h 429548 17
TOPSEC TAP-62200 5 3 2 1.42h 5002 18 2 1 1 >24h 326788 18

Alcatel-Lucent OAW-AP1101 5 3 2 1.4h 5002 18 3 2 1 >24h 326788 18
HAN-Networks AP211 5 3 2 1.45h 5002 18 2 1 1 >24h 326788 18

Cetron G500SE 3 3 0 1h 3473 16 1 1 0 >24h 231095 16
Rokid Mini 1 1 0 0.2h 694 9 1 1 0 6.9h 23475 9

Xiaomi Xiao AI Pro 1 1 0 0.1h 351 3 0 0 0 6.1h 20758 3
Totolink T10 8 6 2 0.39h 1177 16 3 2 1 >24h 84124 16

SAIC-GM-Wuling New Baojun 2 1 1 0.09h 252 5 2 1 1 4.5h 15684 5
Linksys Velop 2 1 1 1.1h 3491 13 0 0 0 >24h 248867 13

Brilliance Auto V7 1 0 1 0.08h 217 1 1 0 1 4.3h 13720 1

TABLE 3: Fuzzing Accuracy. Total represents the total number
of the reported bugs, ACC is the accuracy and obtained by a
division operation (confirmed/reported).

Device #Reported Confirmed ACC
#Total #CI #Crash #Total #CI #Crash

E8820 1 0 1 1 0 1 100%
TAP-62200 8 5 3 5 3 2 62.5%

OAW-AP1101 6 4 2 5 3 2 83.3%
AP211 7 5 2 5 3 2 71.4%
G500SE 4 4 0 3 3 0 75%

Rokid Mini 1 1 0 1 1 0 100%
Xiao AI Pro 1 1 0 1 1 0 100%

T10 13 8 5 8 6 2 61.5%
New Baojun 2 1 1 2 1 1 100%
Linksys Velop 2 1 1 2 1 1 100%

V7 1 0 1 1 0 1 100%

Figure 5: Global Distribution of the Weak-authenticated
Brokers. The top three countries are South Korea, China and
the United States, which contain 27,413, 20,220 and 6,417
vulnerable brokers respectively.

Exploitability and Harmfulness of the Vulnerabili-
ties. As Table 1 shows, the vulnerabilities we found affect
many aspects of people’s lives, including home life, office
environment, and transportation. These vulnerabilities can
be exploited in a different way than traditional attacks.
Previous malware like Mirai focuses on the open services
(ports) of a device, requiring an attacker to know the IP
address and port of the device. However, in a trampoline-
over-the-air attack, attackers just need to know the topic
to which the device subscribes after finding an exploitable
broker. The topic usually includes the device’s ID, such
as the VIN of a vehicle, which can be guessed or obtained
by unauthorized subscription. Attackers can exploit vul-
nerabilities that lead to remote code execution to publish
malicious messages to all online devices for indiscriminate
attacks and construct a botnet as Mirai did.

To prove the trampoline-over-the-air attack is ex-
ploitable and harmful in reality, we built automated exploit

scripts to demonstrate the exploitability of these vul-
nerabilities to third-party vulnerability assessment agen-
cies [47]. It is important to note that all the IoT devices
under test belong to us. For example, we exploited the
command injection vulnerability of the New Baojun ve-
hicle to gain the root privilege of the vehicle’s T-Box
unit and then played with the CAN bus to perform some
hazardous actions such as opening the door and igniting
the engine. In another instance, we took advantage of
the command injection vulnerability of the Alcatel-Lucent
wireless router to take over the device entirely from the
Internet. We also exploited the buffer overflow vulnera-
bility of Totolink wireless router successfully. There is no
length limitation in the vulnerable message, and a stack
overflow occurs when the length of the url field exceeds
84 bytes. We injected shellcode into a fixed heap address
and tampered with the return address with shellcode’s
address, hijacked the program control flow, and got the
device shell. We received 44,000 USD bug bounty rewards
and helped these manufacturers fix the vulnerabilities we
discovered.

6.3. Case Study

We present four cases to demonstrate the effectiveness
of SHADOWFUZZER and prove that the trampoline-over-
the-air attack does exist in reality. The remaining cases
are shown in Appendix §C. Among the 11 devices, ZTE
E8820, TOPSEC TAP-62200, Alcatel-Lucent AP1101,
HAN AP211, Cetron G500SE, Rokid Mini, and Brilliance
V7 communicate with remote brokers, and others commu-
nicate with local brokers. The brokers of ZTE E8820 and
Cetron G500SE are configured with shared credentials,
while Rokid Mini’s broker is configured with dynamic-
generated credentials. The brokers of other devices are
anonymously accessible.

OAW-AP1101/TAP-62200/AP211 Access Point. We
found five severe vulnerabilities in Alcatel-Lucent OAW-
series access point devices, such as OAW-AP1101. Ad-
ministrators can use the Cloud Services Platform (CSP)
to control these devices remotely over the MQTT protocol.
Although there are hard-coded credentials (i.e., username
and password) in the devices’ firmware, the broker does
not verify them and lacks authorization management, al-
lowing attackers to exploit the vulnerabilities to execute
arbitrary commands on all devices connected to the CSP.
These access points have been deployed in various sites
such as hospitals and office environments, providing at-

181

Authorized licensed use limited to: Tsinghua University. Downloaded on September 23,2022 at 14:00:55 UTC from IEEE Xplore. Restrictions apply.

1 {"messageID":"e98b1234 -1234-4321-xxxx-xxxxxxxxxxxx",
2 "method":"basicinfo",
3 "macAddress":"11:22:33:FF:FF:FF",
4 ...}
5 /* The code of processing the above message in the

executable file. */
6 char dest[88];
7 ...
8 v8 = (const char *)json_object_get_string(v63);
9 strcpy(g_method, v8);
10 ...
11 if (strcmp(g_method, "setSsh"))
12 {
13 memset(dest, 0, 0x32u);
14 v59 = strlen(g_method);
15 memcpy(dest, g_method, v59 + 1); // stack overflow
16 printf("methodstr=%s\n", dest);
17 }

Listing 5: A vulnerable message of Alcatel-Lucent access point
and the processing code.

1 {"uuid":"AABB -1234","type":"status",
2 "TS":"2021-03-09T13:22:34Z",
3 "data":
4 {"ap_bssid":"AA:BB:CC:DD:EE:FF","band":"5G",
5 "sta_bssid":"AA:BB:CC:DD:EE:FF",
6 "rssi":"", "interface":"ath1"}}
7 /* The code of processing the above message in the shell

script. */
8 BSSID = "$(jsonparse data.sta_bssid < $PAYLOAD_PATH)"
9 TODIE = "$(find ${TESS_CS_SURVEYS} ${TESS_CS_PENDING_STEERS}

- iname ${BSSID} | grep -v '.OLD')"

Listing 6: A vulnerable message of Linksys Velop wireless
router and the processing code.

tackers access entries to break into the internal networks.
After further study, we found the same vulnerabilities also
exist in other manufacturers’ access point devices such
as TOPSEC TAP-series APs and HAN Networks HAN-
series APs. Considering the domain names of these CSPs
are "*.han-networks.com", we speculated that HAN Net-
works is the Original Equipment Manufacturer (OEM).

Listing 5 is one of the vulnerable messages and the
code to process it. The mutator mutates the method field
of the JSON-structured data and changes the value to a
long string. While processing the message, the program
uses the memcpy() function to copy the value of the method
field to a stack-based buffer, which is only 88 bytes long.
However, the third parameter, i.e., the length to copy, is the
length of the source buffer. When the length of the method
field is too long to exceed the size of the destination buffer
significantly, a stack buffer overflow occurs. Attackers can
leverage the vulnerability to construct a crafted exploit,
then publish the malicious message with the specified
topic to the remote broker located in the CSP so that the
broker forwards the message to the specific victim device.

Linksys Velop Wireless Router. Linksys Velop [48]
is a series of wireless router that supports Mesh net-
working between multiple devices in the same LAN. A
mosquitto broker without authentication is embedded in
Linksys Velop wireless router for device-to-device inter-
action. A command injection vulnerability in the process
of message can be triggered by injecting a malicious
argument "-exec command" to a find command to execute
an arbitrary system command. As shown in Listing 6,
the value of the "sta bssid" field is extracted from the
message and is finally passed to the find command as
an argument. Therefore, attackers in the same LAN can
inject "-exec command" into the "BSSID" variable to make
the device run the malicious command. This vulnerability
was discovered by a GTFOBins rule.

Rokid Mini Smart Speaker. One command injection
vulnerability has been found in the Rokid Mini smart
speaker. The problem occurs on the runShell action of the
MQTT message, and attackers can execute arbitrary com-
mands by injecting malicious commands into the cmd field.
What is different from the above cases is that the MQTT
credential of the device is exclusive and generated dynam-
ically, which allows the broker to separate permissions
with different credentials. Because the MQTT protocol is
M2M-based, attackers can deduce the generation process
of the dynamic credential, reproduce and use it to connect
to the broker, and then publish malicious messages to
the device they dominate. After further research, unfor-
tunately, we notice that the authorization of this broker is
also insufficient, allowing attackers to publish messages
to arbitrary devices from anywhere on the Internet.

ZTE E8820 Wireless Router. The users can use a
mobile app to manage this wireless router. The protocol
used between the app and the router is MQTT, and the
broker authenticates the clients by a shared client certifi-
cate, which is hard-coded in the firmware images. After
receiving a new message sent from the broker, the device
calls strstr(payload,"method") to determine whether a
"method" string is included in the payload of the message.
If the payload length is zero, the pointer of the payload
(the first parameter of strstr) is null, triggering a NULL-
pointer-dereference crash. Attackers can use this bug to
attack the MQTT service of all the online devices with this
vulnerability. It is noteworthy that this wireless router first
accesses a server to obtain a cookie value and the address
of the MQTT broker used for the later communication.
We used the scheme mentioned in §4.2 to simulate this
process and returned the cookie and the shadow broker’s
address to the devices to make the device connect to our
shadow broker successfully.

7. Discussion

In this section, we discuss the root causes of the
security issues in MQTT-based communication, the lim-
itations, the ethical considerations, and the bug fixes of
our work.

7.1. Root Cause Analysis

Flaw of M2M. M2M is a widely-used communication
model in IoT scenario. To simplify the communication
between the devices and the cloud servers, some man-
ufacturers store the credentials in the devices’ firmware
images, which helps the devices connect to servers ac-
tively. Though some devices use a dynamic generation
approach to obtain a provisional credential from the cloud,
the generation process can still be deduced. For instance,
Rokid Mini Smart Speaker sends a set of values, such
as sn, deviceId and secret, to the cloud and receives a
dynamically generated password to connect to the broker.
However, these values are still fixed in one device, which
can be extracted from the device’s firmware. Therefore,
currently, authentication problems are still common in the
products of various manufacturers.

Unreliable Server. For protocols based on request/re-
sponse architecture like HTTP, the client’s real identity
is unknown to the server. Therefore there are various

182

Authorized licensed use limited to: Tsinghua University. Downloaded on September 23,2022 at 14:00:55 UTC from IEEE Xplore. Restrictions apply.

authentication and protection mechanisms on the server-
side. In contrast, MQTT is a loosely coupled protocol
based on pub/sub architecture, and the message receiver
(i.e., the subscriber) is the role of client. From client’s
perspective, the server is entirely trustworthy regardless of
the middleman on the connection, making the subscriber
rarely check the validity of the received messages. How-
ever, if the broker is set up with weak authentication and
authorization, an unauthorized publisher can send mali-
cious messages to the target device. As a consequence,
subscribers have to face various security risks even if they
are only clients.

Misuse of MQTT Protocol.. Due to the simplicity
and versatility of MQTT, there exists some misuses of
this protocol. The pub/sub model of MQTT is similar
to the bus communication system, it can not only be
used for device communication, but also for inter-process
communication. The Totolink T10 wireless router, for
instance, opens a naked MQTT service and uses MQTT
as an inter-process communication protocol to transmit
HTTP requests between processes. However, it introduces
a new attack surface that attackers can publish malicious
HTTP data to the subscriber process from outside without
HTTP authentication. On the other hand, some cases
support transmitting system commands to the devices
over the MQTT protocol. It is a dangerous action which
attackers can use to inject malicious commands into the
messages. We regard these behaviors as misuses of the
MQTT protocol.

7.2. Mitigation

Sophisticated Authentication. Developers are still
necessary to adopt sophisticated authentication measures
based on the following considerations. On the one hand,
it can prevent attackers from easily obtaining credentials.
On the other hand, sophisticated authentication makes it
convenient for the broker to isolate user privileges. For
example, after binding with the app’s user, the device can
use the information of the user’s account as a secret to
generating a credential because this information cannot
be hard-coded into the firmware.

Tightly Coupled Authorization of Device and User.
In fact, the problems involved in trampoline-over-the-air
attacks are mainly caused by lax permissions isolation,
which provides conditions for unauthorized attackers to
launch peer-to-peer attacks. Administrators of the bro-
ker should bind the user identifier with the device-side
ClientId or Username once the user adds the device to his
account on the application. In this way, the attacker who
uses a different ClientId or Username can not publish
messages to this device because of the tightly coupled
authorization. Although this measure has been adopted
by most public IoT cloud platforms, many manufacturers
still ignore this issue in their private brokers.

Attack Detection on the Broker. Typically, the broker
is only in charge of forwarding the messages without
modifying or checking the message content, allowing the
attack payload to be passed to subscribers without any
constraints. One solution is to add a message content fil-
tering module like WAF (Web Application Firewall) [49]
to detect possible exploits in messages published from
attackers.

7.3. Limitations

Device Type. With the help of the shadow broker,
our fuzzing framework can be applied to any device
that uses the plaintext MQTT protocol, regardless of the
operating system type. However, certificate replacement is
necessary for fuzzing clients communicating with brokers
on TLS-based MQTT. It is necessary that the device can
provide a Linux shell for certificate replacement. Hence
the target device needs to be Linux-based, such as Open-
Wrt [50], one of the prevailing embedded device systems.
Although this method increases few conditions for black-
box fuzzing, it is an effective and common engineering
technique for fuzzing on clients.

Device Selection. Successful exploitation of these vul-
nerabilities requires a combination of vulnerable brokers.
Devices that communicate with brokers in the full-fledged
IoT cloud platform such as Google IoT Cloud, Ama-
zon AWS, Microsoft Azure, and Samsung SmartThings
are less vulnerable to the trampoline-over-the-air attack
because the authentication of these MQTT brokers is
generally robust enough. Our fuzzing approach can be
applied to these devices; however, even if vulnerabilities
are found, attackers will not be able to exploit them
because of the robust authentication mechanisms in the
cloud. However, as described in §6.2, there are still many
MQTT brokers with authentication problems around the
world. Individuals or companies may set up these brokers
to communicate with their devices, and the security of
these brokers and devices is equally worthy of attention.

7.4. Ethical Considerations

In order to avoid ethical violations, we mainly consider
the following four aspects. (i) To find brokers on the
Internet that allow anonymous access, we extracted infor-
mation from the Censys database rather than establishing
MQTT connections directly to real-world brokers. It is
necessary to indicate that we did not perform a large-
scale validation after obtaining Censys’s results and only
performed validation on the targets mentioned in this
paper. (ii) To implement a fuzzing test on MQTT clients,
we used a shadow broker instead of the original broker
to avoid publishing test cases to the actual broker. (iii)
We only experimented on the IoT devices belong to us
and did not send messages to other devices. (iv) We
have followed the best security practices and reported all
the vulnerabilities to manufacturers as soon as we found
them. After the notifications, we left enough time for the
manufacturers to fix the vulnerabilities, and this is the best
we can do from a security researcher’s point of view.

7.5. Bug Fixes

After confirming the vulnerabilities, the manufacturers
of the tested devices did not disclose the details of the fix
to us. As a result, we re-examined the vulnerabilities six
to twelve months after reporting them.

Nine manufacturers have already fixed the vulnerabili-
ties. Concretely, HAN Networks/TOPSEC/Alcatel-Lucent
have fixed the client-side vulnerabilities and configured a
hard-coded credential on the broker. ZTE has confirmed
both the broker-side and device-side vulnerabilities. We

183

Authorized licensed use limited to: Tsinghua University. Downloaded on September 23,2022 at 14:00:55 UTC from IEEE Xplore. Restrictions apply.

can not use the hard-coded certificate to connect to the
broker now, and the NULL pointer dereference bug has
been fixed in the firmware version 2.0.14, according
to the statement [51]. Xiaomi has fixed the command
injection bug, and the embedded MQTT service is not
accessible from LAN currently. Totolink has repaired the
reported vulnerabilities in the firmware version 4.1.8.
Linksys added an ACL file named strict.acl in the
embedded mosquitto broker with strict restrictions on
readable/writable topics. The broker of Brilliance Auto
V7 has been closed, so we can not connect to it. SAIC-
GM-Wuling verified and confirmed the vulnerabilities as
soon as we reported to them. This manufacturer has
repaired the client-side and broker-side vulnerabilities on
the New Baojun vehicle. Cetron and Rokid have received
and confirmed the vulnerabilities but have yet to complete
a fix.

8. Related Work

We have introduced the most related works and com-
pared them with our work in previous sections. In this
section, we discuss other works related to MQTT security
and vulnerability discovery on IoT devices.

8.1. MQTT Protocol Security.

Implementation Issues. Previous works [4], [12],
[52]–[54] on MQTT security mainly focus on the issues of
broker’s authentication and authorization. Lucas Lundgren
[52] proposed that MQTT brokers without authentication
could be used to control botnets to evade investigation.
Firdous et al. [55] summarized the MQTT protocol’s
attack surfaces and possible threats, like sensitive data
leakage and unauthorized publication. Unlike the above
works, we focus on the MQTT security issues on the
device side and propose a comprehensive approach to
detect vulnerabilities of parsing MQTT messages.

Reinforcement. Due to the flaws in the MQTT se-
curity mechanism, some studies [56]–[60] proposed ap-
proaches to strengthen security. For example, Nirunta-
sukrat et al. [58] introduced a new authorization mecha-
nism based on OAuth. Singh et al. [59] designed multiple
schemes to solve the difficulty of certificate management.
Bali et al. [60] used the chaotic algorithm to implement
a lightweight authentication mechanism for MQTT. Al-
though these measures attempt to strengthen the protocol
in many ways, they bring more complexity for resource-
constrained IoT devices.

8.2. Vulnerability Discovery on IoT Device.

With the increase in IoT devices and related attack
risks, researchers [61] pay more attention to the methods
for discovering the vulnerabilities of IoT devices, which
mainly includes two types of solutions: static and dynamic
analysis methods.

Static Analysis. Most static analysis methods focus
on specific vulnerability issues, such as weak keys [62],
authentication bypass [63], memory bugs [64] and taint-
style vulnerability [65]. KARONTE [66] focuses on find-
ing vulnerabilities cross binaries via tracking the data flow

with the label of inter-process communication. However,
static methods may result in a significant amount of false
positives and are limited to the problem of how to obtain
the device’s firmware.

Dynamic Analysis. In contrast, dynamic methods are
more suitable for discovering vulnerabilities in the black-
box IoT devices. Muench et al. [67] implemented a system
based on Avatar [68] and Panda [69] to analyze the
universality of traditional anomaly state detection methods
for the IoT device. In comparison, SHADOWFUZZER can
generate fuzzing data without complex data flow analysis.
Wang et al. [30] discovered vulnerabilities on device’s
web management interface based on a lightweight black-
box fuzzing method, which could only find vulnerabilities
in web services. All these black-box fuzzers are mainly
for the device’s open services, like web services, or other
services running on an open port, which can not be applied
to MQTT clients. Most of the vulnerabilities found by
them can only be exploited under the same LAN without
interaction with the cloud. Compared with the above
fuzzers, SHADOWFUZZER is specific to MQTT clients,
and it can discover vulnerabilities that can be triggered
from anywhere on the Internet, which greatly increases
the risk of these vulnerabilities.

9. Conclusion

We present the threat model of the trampoline-over-
the-air attack and propose a black-box fuzzing system
named SHADOWFUZZER to find vulnerabilities when IoT
devices parse MQTT messages. SHADOWFUZZER lever-
ages a shadow broker to transmit test cases sent from the
fuzzer. It can detect the memory corruption and com-
mand injection vulnerabilities and avoid ethical issues.
Attackers can leverage this type of vulnerabilities to per-
form trampoline-over-the-air attacks on MQTT clients that
communicate with vulnerable brokers. By experimenting
on 15 IoT devices, SHADOWFUZZER finds 34 zero-day
vulnerabilities in 11 of them. All of the vulnerabilities
can lead to remote control or denial-of-service attacks
and affect multiple aspects of people’s lives, such as
transportation, home life, and office environment.

Acknowledgment

We thank the anonymous reviewers and Yingchen Fan,
Yuxuan Wang, Yibing Qian, and Xianzi Kong for their
helpful feedback of this work. This work is supported
by National Key R&D Program of China (Grant No.
2021YFF03072), and National Natural Science Founda-
tion of China (Grant No. U1936121). All opinions and
findings mentioned in this paper are those of the authors.

References
[1] David Boswarthick, Omar Elloumi, and Olivier Hersent. M2M

communications: a systems approach. John Wiley & Sons, 2012.

[2] Patrick Th. Eugster, Pascal Felber, Rachid Guerraoui, and Anne-
Marie Kermarrec. The many faces of publish/subscribe. ACM
Comput. Surv., 35(2):114–131, 2003.

[3] Syaiful Andy, Budi Rahardjo, and Bagus Hanindhito. Attack
scenarios and security analysis of mqtt communication protocol
in iot system. In Proceedings of the 4th International Confer-
ence on Electrical Engineering, Computer Science and Informatics
(EECSI), Yogyakarta, Indonesia, September 19-21, 2017, 2017.

184

Authorized licensed use limited to: Tsinghua University. Downloaded on September 23,2022 at 14:00:55 UTC from IEEE Xplore. Restrictions apply.

[4] Lucas Lundgren. Taking Over the World Through MQTT After-
math. In BlackHat 2017, 2017.

[5] Martin Hron. Are smart homes vulnerable to hacking? https:
//blog.avast.com/mqtt-vulnerabilities-hacking-smart-homes, 2018.

[6] Wei Zhou, Yan Jia, Yao Yao, Lipeng Zhu, Le Guan, Yuhang Mao,
Peng Liu, and Yuqing Zhang. Discovering and understanding the
security hazards in the interactions between iot devices, mobile
apps, and clouds on smart home platforms. In 28th USENIX
Security Symposium, USENIX Security 2019, Santa Clara, CA,
USA, August 14-16, 2019, 2019.

[7] Wei Zhou, Chen Cao, Dongdong Huo, Kai Cheng, Lan Zhang,
Le Guan, Tao Liu, Yan Jia, Yaowen Zheng, Yuqing Zhang, Limin
Sun, Yazhe Wang, and Peng Liu. Reviewing iot security via
logic bugs in iot platforms and systems. IEEE Internet Things
J., 8(14):11621–11639, 2021.

[8] Sazzadur Rahaman, Ya Xiao, Sharmin Afrose, Fahad Shaon,
Ke Tian, Miles Frantz, Murat Kantarcioglu, and Danfeng (Daphne)
Yao. Cryptoguard: High precision detection of cryptographic
vulnerabilities in massive-sized java projects. In Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2019, London, UK, November 11-15, 2019, 2019.

[9] Chaoshun Zuo, Zhiqiang Lin, and Yinqian Zhang. Why does your
data leak? uncovering the data leakage in cloud from mobile apps.
In 2019 IEEE Symposium on Security and Privacy, SP 2019, San
Francisco, CA, USA, May 19-23, 2019, 2019.

[10] Li Zhang, Jiongyi Chen, Wenrui Diao, Shanqing Guo, Jian Weng,
and Kehuan Zhang. Cryptorex: Large-scale analysis of crypto-
graphic misuse in iot devices. In 22nd International Symposium
on Research in Attacks, Intrusions and Defenses, RAID 2019,
Chaoyang District, Beijing, China, September 23-25, 2019, 2019.

[11] Yan Jia, Luyi Xing, Yuhang Mao, Dongfang Zhao, XiaoFeng
Wang, Shangru Zhao, and Yuqing Zhang. Burglars’ iot paradise:
Understanding and mitigating security risks of general messaging
protocols on iot clouds. In Proceedings of the 2020 IEEE Sympo-
sium on Security and Privacy, SP 2020, San Francisco, CA, USA,
May 18-21, 2020, 2020.

[12] Trend Micro Research. The Fragility of Industrial IoTs Data
Backbone. https://documents.trendmicro.com/assets/white pap
ers/wp-the-fragility-of-industrial-IoTs-data-backbone.pdf?v1, ac-
cessed: 2021-06-08.

[13] Araujo Rodriguez, Luis Gustavo, and Daniel Macêdo Batista.
Program-aware fuzzing for mqtt applications. In Proceedings of the
29th ACM SIGSOFT International Symposium on Software Testing
and Analysis, 2020.

[14] Prashant Anantharaman, Michael E. Locasto, Gabriela F. Ciocarlie,
and Ulf Lindqvist. Building hardened internet-of-things clients
with language-theoretic security. In 2017 IEEE Security and
Privacy Workshops, SP Workshops 2017, San Jose, CA, USA, May
25, 2017, 2017.

[15] F-Secure Corporation. mqtt fuzz. https://github.com/F-Secure/mq
tt fuzz, accessed: 2021-06-08.

[16] Andrea Palmieri, Paolo Prem, Silvio Ranise, Umberto Morelli, and
Tahir Ahmad. MQTTSA: A tool for automatically assisting the
secure deployments of MQTT brokers. In Proceedings of the 2019
IEEE World Congress on Services, SERVICES 2019, Milan, Italy,
July 8-13, 2019, 2019.

[17] Santiago Hernández Ramos, M Teresa Villalba, and Raquel
Lacuesta. Mqtt security: A novel fuzzing approach. Wireless
Communications and Mobile Computing, 2018, 2018.

[18] Eclipse Foundation. Eclipse IoT-Testware. https://iottestware.
readthedocs.io/en/development/smart fuzzer.html, accessed: 2021-
06-08.

[19] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoudhury.
AFLNET: A greybox fuzzer for network protocols. In 13th IEEE
International Conference on Software Testing, Validation and Ver-
ification, ICST 2020, Porto, Portugal, October 24-28, 2020, pages
460–465. IEEE, 2020.

[20] Yingpei Zeng, Mingmin Lin, Shanqing Guo, Yanzhao Shen, Tingt-
ing Cui, Ting Wu, Qiuhua Zheng, and Qiuhua Wang. Multifuzz: A
coverage-based multiparty-protocol fuzzer for iot publish/subscribe
protocols. Sensors, 20(18):5194, 2020.

[21] Greg Banks, Marco Cova, Viktoria Felmetsger, Kevin Almeroth,
Richard Kemmerer, and Giovanni Vigna. Snooze: toward a stateful
network protocol fuzzer. In International conference on informa-
tion security. Springer, 2006.

[22] Joshua Pereyda. boofuzz: Network protocol fuzzing for humans.
https://boofuzz.readthedocs.io/en/stable/, accessed: 2021-06-08.

[23] Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun Zuo,
Zhiqiang Lin, XiaoFeng Wang, Wing Cheong Lau, Menghan Sun,
Ronghai Yang, and Kehuan Zhang. Iotfuzzer: Discovering memory
corruptions in iot through app-based fuzzing. In Proceedings of the
25th Annual Network and Distributed System Security Symposium,
NDSS 2018, San Diego, California, USA, February 18-21, 2018,
2018.

[24] Xiaotao Feng, Ruoxi Sun, Xiaogang Zhu, Minhui Xue, Sheng Wen,
Dongxi Liu, Surya Nepal, and Yang Xiang. Snipuzz: Black-box
fuzzing of iot firmware via message snippet inference. CoRR,
abs/2105.05445, 2021.

[25] Shadowfuzzer. https://github.com/ReAbout/ShadowFuzzer, ac-
cessed: 2022-01-29.

[26] Dick Hardt et al. The oauth 2.0 authorization framework. https:
//datatracker.ietf.org/doc/html/rfc6749, 2012.

[27] Alibaba Cloud. What is message queue for mqtt? https://www.al
ibabacloud.com/help/en/doc-detail/42419.html, accessed: 2022-01-
24.

[28] Antonio Cilfone, Luca Davoli, Laura Belli, and Gianluigi Ferrari.
Wireless mesh networking: An iot-oriented perspective survey on
relevant technologies. Future Internet, 11(4):99, 2019.

[29] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard,
Elie Bursztein, Jaime Cochran, Zakir Durumeric, J. Alex Halder-
man, Luca Invernizzi, Michalis Kallitsis, Deepak Kumar, Chaz
Lever, Zane Ma, Joshua Mason, Damian Menscher, Chad Seaman,
Nick Sullivan, Kurt Thomas, and Yi Zhou. Understanding the mirai
botnet. In Proceedings of the 26th USENIX Security Symposium,
USENIX Security 2017, Vancouver, BC, Canada, August 16-18,
2017, 2017.

[30] Dong Wang, Xiaosong Zhang, Ting Chen, and Jingwei Li. Dis-
covering vulnerabilities in COTS iot devices through blackbox
fuzzing web management interface. Secur. Commun. Networks,
2019:5076324:1–5076324:19, 2019.

[31] Roger A. Light. Mosquitto: server and client implementation of
the MQTT protocol. J. Open Source Softw., 2(13):265, 2017.

[32] mosquitto subscribe. https://mosquitto.org/api/files/mosquitto-h.h
tml#mosquitto subscribe, accessed: 2022-01-24.

[33] CWE. CWE-78: Improper Neutralization of Special Elements used
in an OS Command (’OS Command Injection’). https://cwe.mitr
e.org/data/definitions/78.html, accessed: 2021-06-08.

[34] GTFOBins. https://gtfobins.github.io/, accessed: 2021-06-08.

[35] MQTT. http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.
1-os.html# Toc385349257, accessed: 2021-06-08.

[36] Zakir Durumeric, David Adrian, Ariana Mirian, Michael Bailey,
and J. Alex Halderman. A search engine backed by internet-wide
scanning. In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, Denver, CO, USA,
October 12-16, 2015, 2015.

[37] Censys. Search 2.0 Official Launch Announcement. https:
//search.censys.io/search/definitions?resource=hosts&sort=RELE
VANCE&per page=25&virtual hosts=EXCLUDE&q=#MQTT,
accessed: 2022-01-26.

[38] Xueqiang Wang, Yuqiong Sun, Susanta Nanda, and XiaoFeng
Wang. Looking from the mirror: Evaluating iot device security
through mobile companion apps. In 28th USENIX Security Sym-
posium, USENIX Security 2019, Santa Clara, CA, USA, August
14-16, 2019, 2019.

[39] Eclipse Paho. Eclipse Paho-MQTT and MQTT-SN software.
http://www.eclipse.org/paho, accessed: 2021-06-08.

[40] PanguLab. Janus. https://www.appscan.io/, accessed: 2021-06-08.

[41] Androguard. https://github.com/androguard/androguard, accessed:
2021-06-08.

185

Authorized licensed use limited to: Tsinghua University. Downloaded on September 23,2022 at 14:00:55 UTC from IEEE Xplore. Restrictions apply.

[42] Binary Ninja. https://binary.ninja/, accessed: 2021-06-08.

[43] OpenSSL - Cryptography and SSL/TLS Toolkit. https://www.op
enssl.org/, accessed: 2021-06-08.

[44] die.net. iptables(8) - Linux man page. https://linux.die.net/man/8/
iptables, accessed: 2021-06-08.

[45] Samsung. cotopaxi. https://github.com/Samsung/cotopaxi, ac-
cessed: 2021-06-08.

[46] CWE. CWE-704: Incorrect Type Conversion or Cast. https://cw
e.mitre.org/data/definitions/704.html, accessed: 2021-06-08.

[47] GeekPwn. http://www.geekpwn.org/, accessed: 2021-06-08.

[48] Velop Whole Home Mesh WiFi: Strong WiFi Everywhere —
Linksys. https://www.linksys.com/us/velop/, accessed: 2021-06-
08.

[49] OWASP. Web Application Firewall. https://owasp.org/www-com
munity/Web Application Firewall, accessed: 2021-06-08.

[50] Welcome to the OpenWrt Project. https://openwrt.org/, accessed:
2021-09-20.

[51] ZTE. Statement of Vulnerabilities in ZTE E8810/E8820/E8822
Series Routers. http://support.zte.com.cn/support/news/Loophole
InfoDetail.aspx?newsId=1014202, accessed: 2020-12-17.

[52] Lucas Lundgren. Light Weight Protocol Serious Equipment Critical
Implications. In Defcon 24, 2016.

[53] Moshe Zioni. MQTT for Fun and Profit Explore Exploit.
https://www.slideshare.net/moshez/mqtt-for-fun-and-profit-explo

re-exploit-owasp-il-2017-v12, 2020.

[54] M. S. Harsha, B. M. Bhavani, and K. R. Kundhavai. Analysis
of vulnerabilities in MQTT security using shodan API and im-
plementation of its countermeasures via authentication and acls.
In Proceedings of the 2018 International Conference on Advances
in Computing, Communications and Informatics, ICACCI 2018,
Bangalore, India, September 19-22, 2018, 2018.

[55] Syed Naeem Firdous, Zubair A. Baig, Craig Valli, and Ahmed
Ibrahim. Modelling and evaluation of malicious attacks against
the iot MQTT protocol. In Proceedings of the 2017 IEEE Interna-
tional Conference on Internet of Things (iThings) and IEEE Green
Computing and Communications (GreenCom) and IEEE Cyber,
Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData), Exeter, United Kingdom, June 21-23, 2017, 2017.

[56] Alessandra Rizzardi, Sabrina Sicari, Daniele Miorandi, and Alberto
Coen-Porisini. AUPS: an open source authenticated publish/sub-
scribe system for the internet of things. Inf. Syst., 62:29–41, 2016.

[57] Ricardo Neisse, Gary Steri, and Gianmarco Baldini. Enforcement
of security policy rules for the internet of things. In Proceedings
of the IEEE 10th International Conference on Wireless and Mo-
bile Computing, Networking and Communications, WiMob 2014,
Larnaca, Cyprus, October 8-10, 2014, 2014.

[58] Aimaschana Niruntasukrat, Chavee Issariyapat, Panita Pongpai-
bool, Koonlachat Meesublak, Pramrudee Aiumsupucgul, and Anun
Panya. Authorization mechanism for mqtt-based internet of things.
In Proceedings of the IEEE International Conference on Commu-
nication, ICC 2015, London, United Kingdom, June 8-12, 2015,
Workshop Proceedings, 2016.

[59] Meena Singh, MA Rajan, VL Shivraj, and P Balamuralidhar.
Secure mqtt for internet of things (iot). In Proceedings of the
2015 Fifth International Conference on Communication Systems
and Network Technologies, Gwalior, India, April 4-6, 2015, 2015.

[60] Ranbir Singh Bali, Fehmi Jaafar, and Pavol Zavarsky. Lightweight
authentication for MQTT to improve the security of iot commu-
nication. In Proceedings of the 3rd International Conference on
Cryptography, Security and Privacy, ICCSP 2019, Kuala Lumpur,
Malaysia, January 19-21, 2019, 2019.

[61] Miao Yu, Jianwei Zhuge, Ming Cao, Zhiwei Shi, and Lin Jiang. A
survey of security vulnerability analysis, discovery, detection, and
mitigation on iot devices. Future Internet, 12(2):27, 2020.

[62] Andrei Costin, Jonas Zaddach, Aurélien Francillon, and Davide
Balzarotti. A large-scale analysis of the security of embedded
firmwares. In Proceedings of the 23rd USENIX Security Sympo-
sium, San Diego, CA, USA, August 20-22, 2014, 2014.

[63] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher
Kruegel, and Giovanni Vigna. Firmalice - automatic detection
of authentication bypass vulnerabilities in binary firmware. In
Proceedings of the 22nd Annual Network and Distributed System
Security Symposium, NDSS 2015, San Diego, California, USA,
February 8-11, 2015, 2015.

[64] Drew Davidson, Benjamin Moench, Thomas Ristenpart, and
Somesh Jha. FIE on firmware: Finding vulnerabilities in embedded
systems using symbolic execution. In Proceedings of the 22th
USENIX Security Symposium, Washington, DC, USA, August 14-
16, 2013, 2013.

[65] Kai Cheng, Qiang Li, Lei Wang, Qian Chen, Yaowen Zheng,
Limin Sun, and Zhenkai Liang. Dtaint: Detecting the taint-style
vulnerability in embedded device firmware. In Proceedings of the
48th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2018, Luxembourg City, Luxembourg,
June 25-28, 2018, 2018.

[66] Nilo Redini, Aravind Machiry, Ruoyu Wang, Chad Spensky, An-
drea Continella, Yan Shoshitaishvili, Christopher Kruegel, and
Giovanni Vigna. Karonte: Detecting insecure multi-binary inter-
actions in embedded firmware. In Proceedings of the 2020 IEEE
Symposium on Security and Privacy, SP 2020, San Francisco, CA,
USA, May 18-21, 2020, 2020.

[67] Marius Muench, Jan Stijohann, Frank Kargl, Aurélien Francillon,
and Davide Balzarotti. What you corrupt is not what you crash:
Challenges in fuzzing embedded devices. In Proceedings of the
25th Annual Network and Distributed System Security Symposium,
NDSS 2018, San Diego, California, USA, February 18-21, 2018,
2018.

[68] Jonas Zaddach, Luca Bruno, Aurélien Francillon, and Davide
Balzarotti. AVATAR: A framework to support dynamic security
analysis of embedded systems’ firmwares. In Proceedings of the
21st Annual Network and Distributed System Security Symposium,
NDSS 2014, San Diego, California, USA, February 23-26, 2014,
2014.

[69] Brendan Dolan-Gavitt, Josh Hodosh, Patrick Hulin, Tim Leek,
and Ryan Whelan. Repeatable reverse engineering with PANDA.
In Proceedings of the 5th Program Protection and Reverse En-
gineering Workshop, PPREW@ACSAC, Los Angeles, CA, USA,
December 8, 2015, 2015.

[70] ARGAM ARTASHYAN. XIAOMI ENTERS HOTELS AND
REAL ESTATE NICHES AND BRINGS AIOT SMART SOLU-
TIONS. https://www.gizchina.com/2019/11/19/xiaomi-enters-hot
els-and-real-estate-niches-and-brings-aiot-smart-solutions/, 2019.

[71] This Is The New Brilliance V7 SUV For China. https://carnewschi
na.com/2017/10/19/new-brilliance-v7-suv-china/, accessed: 2021-
06-08.

186

Authorized licensed use limited to: Tsinghua University. Downloaded on September 23,2022 at 14:00:55 UTC from IEEE Xplore. Restrictions apply.

Appendix A.
Selected IoT Devices and Vulnerabilities
Numbers

TABLE 4: 15 Selected IoT Devices.

Brand Type Model Authentication Broker Location

ZTE Wireless Router E8820 Hard-coded Certificate Remote
TOPSEC Access Point TAP-62200 No Remote

Alcatel-Lucent Access Point OAW-AP1101 No Remote
HAN Networks Access Point AP211 No Remote

Cetron Access Controller G500SE Hard-coded Account Remote
Rokid Smart Speaker Rokid Mini Dynamic Account Remote
DDPAI Dash Recorder X2S Pro Hard-coded Account Remote
Hikvision NAS H90 Hard-coded Account Remote
Leapmotor Vehicle T03 Hard-coded Account Remote
Microsound Smart Speaker Delta Mini Hard-coded Account Remote

Brilliance Auto Vehicle Control V7 No Remote
Xiaomi Smart Speaker Xiao AI Speaker Pro No Embedded
Totolink Wireless Router T10 No Embedded

SAIC-GM-Wuling Vehicle T-Box New Baojun No Embedded
Linksys Wireless Router Velop No Embedded

TABLE 5: CVE/CNVD/CNNVD Numbers of the Vulnerabili-
ties. For the bug type, NPD means NULL pointer dereference,
CI represents command injection, BO means buffer overflow, TE
means incorrect type conversion.

Device Device Type No. Vul Type

ZTE E8820 Wireless Router CVE-2020-6881 NPD
TOPSEC TAP-62200 Access Point CNVD-2020-73267 CI,BO,NPD1

Alcatel-Lucent OAW-AP1101 Access Point CNVD-2020-73265 CI,BO,NPD
HAN Networks AP211 Access Point CNVD-2020-73266 CI,BO,NPD

Cetron G500SE Access Controller CNVD-2020-73504 CI
Totolink T10 Wireless Router CNVD-2020-28090 CI
Totolink T10 Wireless Router CNVD-2020-28089 CI
Totolink T10 Wireless Router CNVD-2021-43461 CI
Totolink T10 Wireless Router CNVD-2021-43462 CI
Totolink T10 Wireless Router CNVD-2021-43463 CI
Totolink T10 Wireless Router CNVD-2021-44929 CI
Totolink T10 Wireless Router CNVD-2021-44930 BO
Totolink T10 Wireless Router CNVD-2021-44931 TE

Brilliance Auto V7 Vehicle CNNVD-202012-189 BO
SAIC-GM-Wuling New Baojun Vehicle CNNVD-202012-149 CI
SAIC-GM-Wuling New Baojun Vehicle CNNVD-202012-149 BO

1 CNVD assigned us only one number for multiple vulnerabilities. This situation also appears
in the following two devices.

Appendix B.
GTFOBins Rules

TABLE 6: GTFOBins rules we collect.
Index Payload Command

1 . -o ! -name . -exec COMMAND find
2 --exec=’! COMMAND ’ mail
3 -x sh -c ’reset; exec COMMAND 1>&0 2>&0’ watch
4 -e ’os.execute(" COMMAND ")’ lua
5 -s --eval=$’x:\n\t-’" COMMAND " make
6 COMMAND nohup,busybox,env
7 -r ’system(COMMAND);’ php
8 -u / COMMAND flock
9 ’BEGIN system(" COMMAND ")’ awk,gawk,mawk
10 -e ’/bin/sh -c COMMAND ’ rdoc gem open
11 -e "exec(’/bin/sh -c COMMAND ’) jrunscript
12 --dev null --script-security 2 --up ’/bin/sh -c COMMAND ’ openvpn
13 -e ’exec "/bin/sh -c COMMAND ";’ perl
14 -c ’import os; os.system("/bin/sh -c COMMAND ")’ python
15 -p ’‘/bin/sh -c COMMAND 1>&0‘’ rake
16 -e ’/bin/sh -c COMMAND ’ 127.0.0.1:/dev/null rsync
17 -e ’exec "/bin/sh -c COMMAND "’ ruby
18 -cf /dev/null /dev/null --checkpoint=1 --checkpoint-action=exec=’ COMMAND ’ tar
19 -a /dev/null COMMAND xargs
20 -n ’1e exec COMMAND ’ /etc/hosts sed

Appendix C.
Case Study

Xiaomi Xiao AI Speaker Pro. A Mosquitto broker
without authentication was embedded in Xiaomi Xiao
AI Speaker Pro for inter-process communication, and the
process mibt mesh proxy receives messages published
from mibt mesh. A command injection vulnerability oc-
curs when the subscriber processes messages. Attackers
located in the same LAN can publish a crafted payload

AP APAP

AttackerSpeaker Speaker

Room1 Room2 Room3

Internet

Switch

Hotel

Figure 6: A potential attack scenario of Xiaomi AI Speaker Pro.
The attacker living in the hotel can attack the speakers in other
rooms if there is no AP isolation.

to this intelligent speaker to gain the root privilege of the
device. This speaker is top-rated and has been used in
more than 5,000 hotels, covering at least 34 cities [70].
As Figure 6 shows, attackers staying in these hotels can
control the speakers in other rooms via this vulnerability
if there is no AP isolation deployed.

Cetron Access Point and Access Controller. The
Cetron Beecon series access points and some access con-
trollers such as G500SE and G1000S can be controlled
by a WeChat mini-program, which communicates with the
devices over the plaintext MQTT protocol. The credential
is shared among all these devices and is hard-coded in
the firmware. Three command injection vulnerabilities
we found in these devices are harmful. An attacker can
append a baleful command to a string variable, such as
telnetd to open the telnet service.

Totolink T10 Wireless Router. An MQTT broker
based on mosquitto is embedded in Totolink’s multiple
wireless routers such as T10. The broker is in charge
of distributing HTTP data sent from the Web interface
to the handlers. The process cste sub subscribes to the
topics of the HTTP messages and handles them. Our tool
discovered six command injections, one incorrect type
conversion, and one buffer overflow in the parsing of
MQTT payloads.

Brilliance Auto V7. The Brilliance V7 [71] is a mid-
size CUV (crossover Sport Utility Vehicle) produced by
Brilliance Auto under the Zhonghua brand. The vehicle’s
IVI (In-Vehicle Infotainment) system receives location
messages published from a broker that can be accessed
anonymously. A stack overflow vulnerability exists in the
process of string replacement, leading to a DoS attack or
a remote command execution attack.

SAIC-GM-Wuling New Baojun. New Baojun is a
Chinese automobile marque owned by a joint venture
of General Motors and SAIC-GM-Wuling Automobile.
There is an MQTT broker embedded in this vehicle’s T-
Box (Telematics Box) system. Attackers in the in-vehicle
network can access the broker with no credential. An
attacker can trigger a command injection vulnerability and
gain a root shell by publishing an exploit message to the
broker after accessing the in-vehicle network.

187

Authorized licensed use limited to: Tsinghua University. Downloaded on September 23,2022 at 14:00:55 UTC from IEEE Xplore. Restrictions apply.

